Course guide of Mathematical Methods 3 (2671126)
Departamento de Física Teórica y del Cosmos: 24/06/2025
Departamento de Física Atómica, Molecular y Nuclear: 24/06/2025
Grado (bachelor's degree)
Branch
Module
Subject
Year of study
Semester
ECTS Credits
Course type
Teaching staff
Theory
- Javier Fuentes Martín. Grupo: B
- María Elvira Gámiz Sánchez. Grupo: A
- Eugenio Megías Fernández. Grupo: C
Practice
- Javier Fuentes Martín Grupo: 3
- María Elvira Gámiz Sánchez Grupos: 1 y 2
- Eugenio Megías Fernández Grupos: 1 y 2
- Roberto Omar Vega Morales Grupo: 4
Timetable for tutorials
Javier Fuentes Martín
Email- Tuesday de 11:00 a 13:00 (Despacho 21)
- Wednesday de 14:00 a 16:00 (Despacho 21)
- Thursday de 14:00 a 16:00 (Despacho 21)
María Elvira Gámiz Sánchez
Email- Monday de 10:00 a 12:00 (Despacho A3 Mod-A)
- Tuesday de 10:00 a 12:00 (Despacho A3 Mod-A)
- Wednesday de 15:00 a 17:00 (Despacho A3 Mod-A)
Eugenio Megías Fernández
Email- Tuesday de 10:00 a 12:00 (Despacho)
- Wednesday de 10:00 a 12:00 (Despacho)
- Thursday de 10:00 a 12:00 (Despacho)
Roberto Omar Vega Morales
Email- Tuesday de 15:00 a 17:00 (Despacho 23)
- Wednesday de 15:00 a 17:00 (Despacho 23)
- Thursday de 15:00 a 17:00 (Despacho 23)
Prerequisites of recommendations
- Linear Algebra and Geometry I and II, Calculus I, and Mathematical Methods I
- When utilizing AI tools for this course, students are expected to adopt an ethical and responsible approach. The recommendations outlined in the "Recommendations for the Use of Artificial Intelligence at the UGR" document, available at this link: https://ceprud.ugr.es/formacion-tic/inteligencia-artificial/recomendaciones-ia#contenido0, must be followed.
Brief description of content (According to official validation report)
- Hilbert spaces
- Series expansions, eigenfunctions
General and specific competences
General competences
- CG01. Skills for analysis and synthesis
- CG02. Organisational and planification skills
- CG03. Oral and written communication
- CG05. Skills for dealing with information
- CG06. Problem solving skills
- CG07. Team work
- CG08. Critical thinking
- CG09. Autonomous learning skills
- CG10. Creativity
- CG11. Initiative and entrepreneurship
Specific competences
- CE03. Knowing and understanding the mathematical methods necessary to describe physical phenomena
- CE05. Modelling complex phenomena, translating a physical problem into mathematical language
Objectives (Expressed as expected learning outcomes)
That the student understands the general concepts of Hilbert spaces, especially in their application to Physics, and is able to solve the associated problems.
Detailed syllabus
Theory
Unit 1. Normed spaces and Banach spaces.
Unit 2. Euclidean spaces and Hilbert spaces.
Unit 3. Function spaces and series expansions.
Unit 4. Linear operators and introduction to spectral theory.
Unit 5. Functionals and distributions.
Bibliography
Basic reading list
1. L. Abellanas y A. Galindo, Espacios de Hilbert, Eudema, 1987.
2. S. K. Berberian, Introducción al espacio de Hilbert, Teide, 1977.
3. P. García González, J. E. Alvarellos Bermejo y J. J. García Sanz, Introducción al formalismo de la mecánica cuántica, U.N.E.D., Madrid, 2001.
4. G. Helmberg, Introduction to spectral theory in Hilbert space, North Holland, 1969.
5. R. P. Kanwall, Generalized functions (theory and technique), Academic Press, 1983.
6. A. N. Kolmogórov y S.V. Fomín, Elementos de la teoría de funciones y del análisis funcional, M.I.R., 1975.
7. R.D. Richtmyer, Principles of Advanced Mathematical Physics, vol. 1, Springer-Verlag, 1978.
8. P. Roman, Some modern mathematics for physicists and other outsiders, vol. 2, Pergamon, 1975.
9. A. Vera López y P. Alegría Ezquerra, Un curso de Análisis Funcional. Teoría y problemas, AVL, 1997.
10. E. Romera Gutiérrez, M. C. Boscá Díaz-Pintado, F. Arias de Saavedra Alías, F. J. Gálvez Cifuentes, J. I. Porras Sánchez, Métodos Matemáticos: Problemas de Espacios de Hilbert, Operadores lineales y Espectros, Paraninfo, 2013.
Recommended links
Teaching methods
- MD01. Theoretical classes
Assessment methods (Instruments, criteria and percentages)
Ordinary assessment session
The evaluation will be carried out mainly from the exams. Additional consideration will be given to the individual solution of problems and/or tasks, from which the students will demonstrate the acquired knowledge and understanding.
- In the ordinary call, the final exam grade will constitute 70% of the grade (A), and the remaining 30% (B) will be evaluated in a complementary way according to the following criteria: submission of problems and tasks, and/or written assessments.
- To pass the course it will be necessary to obtain at least 4 points (out of 10) in the final exam grade.
Extraordinary assessment session
- Final exam with theoretical questions and problems, related to the subject taught in class.
- As a general rule, the exam will correspond to 100% of the grade. However, upon student request, the exam will count towards 70% of the grade, with the remaining 30% corresponding to the grade obtained in part B of the ordinary call. In this case, it will be necessary to obtain at least 4 points (out of 10) in the final exam grade.
Single final assessment
- In accordance with the UGR's Regulations on Student Assessment and Grading, a single final assessment is available for students who are unable to participate in the continuous assessment method due to any of the reasons stipulated in Article 8. To opt for this single final assessment, students must submit a request via the electronic portal within the first two weeks of the course's instruction, or within two weeks following their enrollment if it occurs later. Exceptions may be made for overriding unforeseen circumstances that arise after these initial periods. The request must clearly state and provide evidence for the reasons preventing their participation in the continuous assessment system. the exam will correspond to 100% of the grade.
- It will consist of an exam involving theoretical questions and/or problems.
Additional information
Students with Specific Educational Support Needs (SESN) Following the recommendations from the CRUE and the UGR's Secretariat for Inclusion and Diversity, the systems for acquiring and assessing competencies outlined in this teaching guide will be applied in accordance with the principle of universal design. This approach aims to facilitate learning and the demonstration of knowledge, aligning with the needs and functional diversity of the student body. Teaching methodology and assessment will be adapted for students with SESN, in line with Article 11 of the UGR's Regulations on Student Assessment and Grading, published in the Official Bulletin of the UGR No. 112, dated November 9, 2016. UGR Inclusion and Diversity For students with disabilities or other SESN, the tutoring system must be adapted to their needs, in accordance with the UGR's Inclusion Unit recommendations. Departments and Centers must establish appropriate measures to ensure that tutoring sessions are held in accessible locations. Furthermore, faculty may request support from the University's competent unit when special methodological adaptations are required.
Información de interés para estudiantado con discapacidad y/o Necesidades Específicas de Apoyo Educativo (NEAE): Gestión de servicios y apoyos (https://ve.ugr.es/servicios/atencion-social/estudiantes-con-discapacidad).