Guía docente de Física Matemática (26711H2)

Curso 2022/2023
Fecha de aprobación:
Departamento de Física Teórica y del Cosmos: 20/06/2022
Departamento de Física Atómica, Molecular y Nuclear: 20/06/2022

Grado

Grado en Física

Rama

Ciencias

Módulo

Física Matemática e Información Cuántica

Materia

Física Matemática

Curso

3

Semestre

1

Créditos

6

Tipo

Optativa

Profesorado

Teórico

  • Manuel Masip Mellado. Grupo: A
  • Ignacio Luis Ruiz Simó. Grupo: B
  • José Santiago Pérez. Grupo: A

Tutorías

Manuel Masip Mellado

Email
  • Lunes de 15:00 a 17:00 (Despacho 3)
  • Miércoles de 15:00 a 17:00 (Despacho 3)
  • Viernes de 15:00 a 17:00 (Despacho 3)

Ignacio Luis Ruiz Simó

Email
  • Lunes de 11:00 a 13:00 (Despacho)
  • Martes de 11:00 a 13:00 (Despacho)
  • Miércoles de 11:00 a 13:00 (Despacho)

José Santiago Pérez

Email
  • Martes
    • 12:00 a 13:00 (Despacho A4 Mod-A)
    • 14:00 a 15:00 (Despacho A4 Mod-A)
  • Miércoles de 14:00 a 18:00 (Despacho A4 Mod-A)

Prerrequisitos y/o Recomendaciones

Es recomendable haber cursado las materias: Métodos Matemáticos, Álgebra Lineal y Geometría, Matemáticas, Métodos Numéricos y Simulación.

Breve descripción de contenidos (Según memoria de verificación del Grado)

  1. Espacios de Hilbert en Mecánica Cuántica.
  2. Teoría de grupos y simetrías.
  3. Técnicas Monte Carlo en Física.

Competencias

Competencias generales

  • CG01. Capacidad de análisis y síntesis
  • CG03. Comunicación oral y/o escrita
  • CG04. Conocimientos de informática relativos al ámbito de estudio
  • CG06. Resolución de problemas
  • CG08. Razonamiento crítico

Competencias específicas

  • CE03. Comprender y conocer los métodos matemáticos para describir los fenómenos físicos.
  • CE05. Modelar fenómenos complejos, trasladando un problema físico al lenguaje matemático.
  • CE08. Utilizar herramientas informáticas para resolver y modelar problemas y para presentar sus resultados.

Resultados de aprendizaje (Objetivos)

  • Conocer y manejar las herramientas matemáticas básicas usadas en la descripción cuántica de observables discretos o continuos para una o varias partículas.
  • Apreciar la importancia de las simetrías para resolver problemas en física.
  • Conocer los grupos de simetría más relevantes en la naturaleza.
  • Saber simular procesos físicos utilizando los métodos Monte Carlo.
  • Realizar integrales Monte Carlo multidimensionales. Conocer los métodos para optimizar la precisión en simulaciones Monte Carlo.

Programa de contenidos teóricos y prácticos

Teórico

  • Tema 1. Operadores lineales sobre espacios de Hilbert. Representación de magnitudes físicas. Base ortonormal. Espacio dual. Operadores lineales. Representación espectral. Espectros continuos.
  • Tema 2. Producto tensorial de espacios de Hilbert. Descripción cuántica de una y varias partículas.
  • Tema 3. Simetrías en física. Operadores de simetría. Grupo, subgrupo, isomorfismos. Clases de conjugación. Grupo de permutaciones. Cosets y grupo cociente.
  • Tema 4. Representaciones de un grupo de simetría. Representación de un grupo. Representaciones equivalentes. Representaciones irreducibles. Caracteres irreducibles. Producto directo de representaciones. Representación regular. Álgebra de un grupo. Ideales por la izquierda.
  • Tema 5. Representaciones de Sn sobre espacios tensoriales. Tableros de Young. Subespacios tensoriales invariantes bajo Sn. Subespacios tensoriales invariantes bajo SU(m).
  • Tema 6. Grupos continuos. Grupos y álgebras de Lie. Grupo de rotaciones. SU(2). Representaciones de SU(n) sobre espacios tensoriales. Coeficientes de Clebsch-Gordan. Aplicaciones en física.
  • Tema 7. Métodos Monte Carlo.  Integración Monte Carlo. Variables aleatorias y distribución de probabilidad. Números pseudo-aleatorios. Muestreo de distribuciones. Camino aleatorio y algoritmo de Metrópolis. Simulación de sistemas físicos.

Práctico

Seminarios/Talleres.

Dependiendo de la disponibilidad de tiempo, se considerarán algunos de los siguientes seminarios:

  • Criptografía cuántica.
  • Simetrías en el mundo subatómico.
  • Métodos Monte Carlo en física de altas energías.

Bibliografía

Bibliografía fundamental

  • Wu-Ki Tung, “Group Theory in Physics”, World Scientific, 1985.
  • L. Abellanas y A. Galindo, “Espacios de Hilbert”, Eudema, 1987.
  • P. Roman, “Some Modern Mathematics for Physicists and other outsiders”, Vol. II, Pergamon, 1975.
  • S. Sternberg, “Group Theory and Physics”, Cambridge University Press, 1994.
  • R.Y. Rubinstein and D.P. Kroese, “Simulation and Monte Carlo Method”, Wiley, 2008

Bibliografía complementaria

  • P. Dirac, “The principles of Quantum Mechanics”, Oxford Univ. Press.
  • N.I. Akhiezer and I.M. Glazman, “Theory of Linear Operators in Hilbert Spaces”, Dover, 1993.
  • T. Pang, “An introduction to Computational Physics”, Cambridge, 1997.
  • M. Hamermesh, “Group Theory and its Aplications to Physical Problems”, Dover, 1962.
  • M.H. Kalos and P.A. Whitlock, ”Monte Carlo methods”, Wiley, 2008.

Enlaces recomendados

Metodología docente

  • MD01. Lección magistral/expositiva 

Evaluación (instrumentos de evaluación, criterios de evaluación y porcentaje sobre la calificación final)

Evaluación ordinaria

La evaluación en la convocatoria ordinaria consistirá en la combinación de una evaluación continua y un examen final:

  • Resolución de problemas, entrega y presentación de trabajos propuestos por el profesor, 30%.
  • Examen escrito de conocimientos de la materia y resolución de problemas, 70%.

Evaluación extraordinaria

La evaluación en la convocatoria extraordinaria consistirá en las mismas pruebas de la evaluación única final, y en ellas el alumno podrá obtener el 100% de la nota.

Evaluación única final

El alumno que, siguiendo la normativa de la UGR en los términos y plazos que en ella se exigen, se acoja a la modalidad de evaluación única final, realizará un examen escrito de todo el temario que incluya cuestiones teóricas y la resolución de problemas (100% de la calificación).

Información adicional

Siguiendo las recomendaciones de la CRUE y del Secretariado de Inclusión y Diversidad de la UGR, los sistemas de adquisición y de evaluación de competencias recogidos en esta guía docente se aplicarán conforme al principio de diseño para todas las personas, facilitando el aprendizaje y la demostración de conocimientos de acuerdo a las necesidades y la diversidad funcional del alumnado.