Course guide of Field and Particle Theory (26711C2)
Grado (bachelor's degree)
Branch
Module
Subject
Year of study
Semester
ECTS Credits
Course type
Teaching staff
Theory
- José Ignacio Illana Calero. Grupo: B
- Manuel María Pérez-Victoria Moreno de Barreda. Grupo: A
Practice
- José Ignacio Illana Calero Grupo: 2
- Manuel María Pérez-Victoria Moreno de Barreda Grupo: 1
Timetable for tutorials
José Ignacio Illana Calero
Email- Monday de 11:00 a 13:00 (Despacho A4 Módulo)
- Wednesday de 11:00 a 13:00 (Despacho A4 Módulo)
- Friday de 11:00 a 13:00 (Despacho A4 Módulo)
Manuel María Pérez-Victoria Moreno de Barreda
Email- Tuesday de 10:00 a 12:00 (Despacho 20)
- Wednesday de 10:00 a 12:00 (Despacho 20)
- Thursday de 10:00 a 12:00 (Despacho 20)
Prerequisites of recommendations
It is advised to have passed the following subjects: Calculus I and II (Análisis matemático I y II), Linear Algebra and Geometry (Álgebra lineal y geometría), Mathematical Methods for Physics (Métodos matemáticos de la física), Mechanics and Wave Physics (Mecánica y ondas), Analytic Mechanics (Mecánica analítica y de los medios continuos), Quantum Physics (Fundamentos cuánticos).
Brief description of content (According to official validation report)
- Relativistic fields (scalar fields; Dirac equation, antiparticles; vector fields; gauge symmetry).
- Standard Model (quarks and leptons, electroweak and strong interactions; Higgs boson).
- Elementary particle collisions and decays.
General and specific competences
General competences
- CG01. Skills for analysis and synthesis
- CG05. Skills for dealing with information
- CG06. Problem solving skills
- CG08. Critical thinking
- CG09. Autonomous learning skills
- CG10. Creativity
Specific competences
- CE01. Knowing and understanding the phenomena of the most important physical theories
- CE05. Modelling complex phenomena, translating a physical problem into mathematical language
- CE09. Applying mathematical knowlegde in the general context of Physics
Objectives (Expressed as expected learning outcomes)
- Understand the concept of of fields and their crucial role in the interplay of special relativity and quantum mechanics.
- Learn and understand the physics laws that govern the subatomic world and the fundamental constituents of nature.
- Learn how to compute observables that allow to compare experimental data with theoretical predictions in particle physics.
Detailed syllabus
Theory
- Introduction. Lorentz and Poincaré symmetries. Particles and Fields.
- Classical field theory.
- Quantization of free fields.
- Field interactions. S matrix and Feynman rules.
- Observables: cross sections and decay widths.
- Quantum Electrodynamics. Elementary processes at tree level.
- Gauge theories and spontaneous symmetry breaking. The Standard Model.
Practice
- Exercise workshops: discussion of the solutions to the proposed exercises.
Bibliography
Basic reading list
-
Maggiore, A modern introduction to quantum field theory, Oxford University Press, 2005
-
M.D. Schwartz, Quantum Field Theory and the Standard Model, Cambridge University Press, 2014.
-
M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory, Addison-Wesley, 1995.
Complementary reading
-
A. Lahiri, P.B. Pal, A first book of Quantum Field Theory, Narosa Publishing House, 2nd edition, 2005.
- S. Weinberg, The quantum theory of fields (I and ), Cambridge University Press, 1995.
Recommended links
-
The Particle Adventure: https://www.particleadventure.org/
-
High-Energy Physics Literature Database (INSPIRE): https://inspirehep.net/
-
The Review of Particle Physics (Particle Data Group): https://pdg.web.cern.ch/pdg/
-
UGR High Energy Theory Group: https://ftae.ugr.es
Teaching methods
- MD01. Theoretical classes
Assessment methods (Instruments, criteria and percentages)
Ordinary assessment session
- Continuous evaluation: 30% of the final mark. Participation in the lectures, discussions, solution to the proposed exercises, tests.
- Final exam: 70% of the final mark.
Extraordinary assessment session
- Final exam corresponding to 100% of the final mark.
Single final assessment
- Same a extraordinary assessment session.
Additional information
Información de interés para estudiantado con discapacidad y/o Necesidades Específicas de Apoyo Educativo (NEAE): Gestión de servicios y apoyos (https://ve.ugr.es/servicios/atencion-social/estudiantes-con-discapacidad).