Fecha de aprobación: 06/06/2023

Guía docente de la asignatura

Análisis Matemático II (2951128)

Grado	rado Grado en Matemáticas y Física				Rama	Rama Ciencias			
Módulo	An	Análisis Matemático				Materia		Análisis Matemático II	
Curso	2 ⁰	Semestre	2 ⁰	Créditos	6	7	Гіро	Obligatoria	

PRERREQUISITOS Y/O RECOMENDACIONES

Se recomienda haber cursado las asignaturas de Cálculo I, Cálculo II y Análisis Matemático I

BREVE DESCRIPCIÓN DE CONTENIDOS (Según memoria de verificación del Grado)

- Integración de funciones de varias variables en recintos sencillos.
- Medida e integral de Lebesgue para funciones de varias variables reales.
- Teoremas de convergencia para la integral de Lebesgue.
- Integración reiterada y cambios de variable.

COMPETENCIAS ASOCIADAS A MATERIA/ASIGNATURA

COMPETENCIAS GENERALES

- CG01 Poseer los conocimientos básicos y matemáticos de las distintas materias que, partiendo de la base de la educación secundaria general, y apoyándose en libros de texto avanzados, se desarrollan en esta propuesta de título de Grado en Matemáticas
- CG02 Saber aplicar esos conocimientos básicos y matemáticos a su trabajo o vocación de una forma profesional y poseer las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de las Matemáticas y de los ámbitos en que se aplican directamente
- CG03 Saber reunir e interpretar datos relevantes (normalmente de carácter matemático) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética
- CG04 Poder transmitir información, ideas, problemas y sus soluciones, de forma escrita u oral, a un público tanto especializado como no especializado
- CG06 Utilizar herramientas de búsqueda de recursos bibliográficos

Código seguro de verificación (CSV): CFE8B00B674A02FF614E606B4CDF6FCA

COMPETENCIAS ESPECÍFICAS

- CE01 Comprender y utilizar el lenguaje matemático. Adquirir la capacidad de enunciar proposiciones en distintos campos de las matemáticas, para construir demostraciones y para transmitir los conocimientos matemáticos adquiridos
- CE02 Conocer demostraciones rigurosas de teoremas clásicos en distintas áreas de Matemáticas
- CE03 Asimilar la definición de un nuevo objeto matemático, en términos de otros ya conocidos, y ser capaz de utilizar este objeto en diferentes contextos
- CEO4 Saber abstraer las propiedades estructurales (de objetos matemáticos, de la realidad observada, y de otros ámbitos) y distinguirlas de aquellas puramente accidentales, y poder comprobarlas con demostraciones o refutarlas con contraejemplos, así como identificar errores en razonamientos incorrectos
- CE05 Resolver problemas matemáticos, planificando su resolución en función de las herramientas disponibles y de las restricciones de tiempo y recursos
- CE06 Proponer, analizar, validar e interpretar modelos de situaciones reales sencillas, utilizando las herramientas matemáticas más adecuadas a los fines que se persigan
- CE07 Utilizar aplicaciones informáticas de análisis estadístico, cálculo numérico y simbólico, visualización gráfica, optimización u otras para experimentar en matemáticas y resolver problemas

COMPETENCIAS TRANSVERSALES

- CT01 Desarrollar cierta habilidad inicial de "emprendimiento" que facilite a los titulados, en el futuro, el autoempleo mediante la creación de empresas
- CT02 Fomentar y garantizar el respeto a los Derechos Humanos y a los principios de accesibilidad universal, igualdad ante la ley, no discriminación y a los valores democráticos y de la cultura de la paz

RESULTADOS DE APRENDIZAJE (Objetivos)

- Comprender las nociones de convergencia puntual y convergencia uniforme para sucesiones y series de funciones, y conocer las ventajas de la segunda con respecto a la
- Saber estudiar, en ejemplos concretos, la convergencia puntual y uniforme de una sucesión de funciones
- Saber utilizar el test de Weierstrass, para estudiar la convergencia absoluta y uniforme de una serie de funciones
- Conocer una construcción de la medida de Lebesgue
- Comprender las principales propiedades topológicas y geométricas de la medida de Lebesgue
- Conocer una definición de la integral de Lebesgue, y distinguirla de otras nociones de
- Comprender en profundidad los teoremas de convergencia para la integral de Lebesgue
- Saber estudiar las propiedades de las funciones definidas como integrales dependientes de un parámetro
- Comprender el concepto de integral impropia
- Conocer el teorema fundamental del cálculo y saber usarlo para estudiar la integrabilidad de funciones de una variable y calcular integrales simples
- Conocer el teorema de Fubini y saber usarlo para calcular integrales múltiples
- Comprender el teorema de cambio de variable y saber usarlo para calcular integrales
- Saber usar la integración para el cálculo de áreas y volúmenes

PROGRAMA DE CONTENIDOS TEÓRICOS Y PRÁCTICOS

TEÓRICO

Capítulo o: Sucesiones y series de funciones

- Sucesiones de funciones. Tipos de convergencia.
- Series de funciones.

Capítulo 1: Medida de Lebesgue en el espacio euclídeo

- σ-álgebras y medidas
- La medida de Lebesgue
- Propiedades topológicas y geométricas de la medida de Lebesgue

Capítulo 2: Integración

- Funciones medibles
- Teorema de aproximación de Lebesgue
- Integral de una función medible positiva
- Funciones integrables
- Teoremas de la convergencia y sus consecuencias

Capítulo 3: Teorema fundamental del cálculo

- Teorema de derivación de Lebesgue para funciones monótonas.
- Derivación de integrales indefinidas.
- Integración de derivadas: Regla de Barrow.

Capítulo 4: Integración iterada y cambio de variable

- Teoremas de Fubini y Tonelli.
- Teorema del cambio de variable.

PRÁCTICO

Las prácticas de esta asignatura consisten en la resolución de ejercicios relacionados con los contenidos teóricos antes expuestos. El temario es el mismo.

BIBLIOGRAFÍA

BIBLIOGRAFÍA FUNDAMENTAL

- BERBERIAN, S.K.: Fundamentals of Real Analysis. Springer, 1998.
- FERNÁNDEZ, J.A. Y SÁNCHEZ, E.: Ejercicios y complementos de Análisis Matemático II. Tecnos, 1986.
- GUZMAN, M. y RUBIO, B.: Integración: teoría y técnicas. Alhambra, 1979.
- LUKEŠ, J. Y MALÝ, J.: Measure and integral. Matfyzpress, Praga, 1995.
- MARSDEN, J.E. Y HOFFMAN; M.J.: Análisis clásico elemental. Addison-Wesley, 1998.
- STROMBERG, K.R.: An Introduction to Classical Real Analysis. American Mathematical Society, 2015.
- WHEEDEN R. L., ZYGMUND A., Measure and Integral. An Introduction to Real Analysis. CRC Press, 2015.

BIBLIOGRAFÍA COMPLEMENTARIA

• BRUCKNER, A. M., BRUCKNER, J. B., THOMSON, B.S.: Real analysis, Prentice-Hall International, Inc. 1997.

IF: Q1818002F

3 / 5

- KANNAN, R., KRUEGER, C. K.: Advanced Analysis on the real line, Springer, 1996.
- KUTTLER, K. L: Modern Analysis, Studies in advanced mathematics, CRC

ENLACES RECOMENDADOS

https://ocw.mit.edu/courses/mathematics/18-02sc-multivariable-calculus-fall-2010/ https://ocw.mit.edu/courses/mathematics/18-125-measure-and-integration-fall-2003/lecturenotes/

METODOLOGÍA DOCENTE

- MD01 Lección magistral/expositiva
- MD03 Resolución de problemas y estudio de casos prácticos
- MD06 Análisis de fuentes y documentos
- MD07 Realización de trabajos en grupo
- MD08 Realización de trabajos individuales

EVALUACIÓN (instrumentos de evaluación, criterios de evaluación y porcentaje sobre la calificación final)

EVALUACIÓN ORDINARIA

Se usarán los siguientes procedimientos de evaluación, con la ponderación que se indica:

- 60% Participación activa en clase y tutorías, entregas y exposiciones de trabajos, controles escritos (breves y frecuentes) de carácter teórico y práctico.
- 40% Examen final.

La calificación numérica se obtendrá como media ponderada de la puntuación obtenida en los anteriores dos tipos de actividad.

EVALUACIÓN EXTRAORDINARIA

Se realizará un único examen de carácter teórico y práctico, que comprenderá todos los contenidos de la asignatura impartidos. La puntuación obtenida en este examen representará el 100% de la calificación.

EVALUACIÓN ÚNICA FINAL

Se realizará un único examen de carácter teórico y práctico, que comprenderá todos los contenidos de la asignatura impartidos. La puntuación obtenida en este examen representará el 100% de la calificación.

INFORMACIÓN ADICIONAL

Las medidas de adaptación de tutorías, docencia y evaluación, así como las ponderaciones de

evaluación, etc. podrían verse afectadas en función de circunstancias extraordinarias que pudieran sobrevenir motivadas por la crisis sanitaria o alguna otra razón. En todo caso, las posibles alteraciones de esta guía docente priorizarán el objetivo de evitar perjuicio a los alumnos afectados.