Guía docente de la asignatura

Astrofísica (26711B2)

Fecha de aprobación: 22/06/2023

Grado	Gra	Grado en Física					Ciencias		
Módulo Astrofísica					Materia	a	Astrofísica		
Curso	4 ⁰	Semestre	2 ⁰	Créditos	6	7	Гіро	Optativa	

PRERREQUISITOS Y/O RECOMENDACIONES

Se recomienda haber cursado Física Atómica y Molecular, Electromagnetismo, Óptica, Física Estadística y las asignaturas obligatorias de primer y segundo curso.

BREVE DESCRIPCIÓN DE CONTENIDOS (Según memoria de verificación del Grado)

- Atmósferas estelares
- Evolución estelar
- Medio interestelar
- Propiedades de galaxias
- Estructura a gran escala del universo
- · Cosmología.

COMPETENCIAS ASOCIADAS A MATERIA/ASIGNATURA

COMPETENCIAS GENERALES

- CG01 Capacidad de análisis y síntesis
- CG02 Capacidad de organización y planificación
- CG03 Comunicación oral y/o escrita
- CG06 Resolución de problemas
- CG08 Razonamiento crítico
- CG09 Aprendizaje autónomo
- CG13 Conocimiento de una lengua extranjera

COMPETENCIAS ESPECÍFICAS

- CE01 Conocer y comprender los fenómenos y las teorías físicas más importantes.
- CE02 Estimar órdenes de magnitud para interpretar fenómenos diversos.
- CE03 Comprender y conocer los métodos matemáticos para describir los fenómenos

CIF: Q1818002F

1/4

físicos.

• CE05 - Modelar fenómenos complejos, trasladando un problema físico al lenguaje matemático.

RESULTADOS DE APRENDIZAJE (Objetivos)

- Utilizar el aprendizaje de otras disciplinas en un campo multidisciplinar.
- Comprender la astrofísica estelar y la evolución de las estrellas.
- Comprender la astrofísica de las galaxias y del medio interestelar.
- Comprender los diferentes modelos de universo.
- Preparación para profundizar en la investigación astrofísica.
- Conocer las técnicas de adquisición e interpretación de datos astronómicos.
- Adquisición de técnicas de modelización astrofísica.

PROGRAMA DE CONTENIDOS TEÓRICOS Y PRÁCTICOS

TEÓRICO

- **Tema 1.** Transporte radiativo en atmósferas estelares. Ecuación del transporte radiativo. Solución formal. Equilibrio termodinámico local. Aproximación de difusión. Otras soluciones. Formación de líneas espectrales. No equilibrio termodinámico local.
- **Tema 2.** Estructura, evolución y nucleosíntesis estelar. Tiempos característicos estelares. Reacciones termonucleares. Transporte de energía en estrellas. Ecuaciones de estructura estelar. Formación y evolución estelar. Objetos compactos y supernovas.
- **Tema 3.** Morfología y clasificación de galaxias: El diagrama de Hubble de clasificación galáctica. Otras clasificaciones. Galaxias activas. La Vía Láctea y sus estructuras. El medio interestelar: regiones HI y HII, nubes moleculares.
- **Tema 4.** Dinámica galáctica. Cinemática de galaxias. Curvas de rotación de las galaxias espirales y materia oscura. Resonancias de Lindblad. Brazos espirales y barras. Formación y evolución galáctica.
- **Tema 5**. Estructura a gran escala del universo: El grupo local. Cúmulos de galaxias. Interacción de galaxias. Supercúmulos. Estructura a gran escala del universo.
- **Tema 6.** Cosmología: Ecuaciones y modelos cosmológicos. El Big-Bang: inflación y nucleosíntesis primordial. Fondo cósmico de microondas. Aceleración del universo. Parámetros cosmológicos: inventario de materia/energía.

PRÁCTICO

Seminarios/Talleres

- Seminarios impartidos por profesionales sobre temas actuales de astrofísica.
- Seminarios impartidos por los alumnos sobre temas específicos de su interés y/o que amplíen las clases teóricas (si el número de alumnos en el grupo lo permite).

Prácticas y problemas: Se realizarán alguna(s) de la(s) práctica(s) que a continuación se proponen:

Práctica 1. Determinación de la distancia y edad de cúmulos estelares.

Práctica 2. Cálculo de modelos de estructura estelar en la ZAMS.

Práctica 3. La relación distancia-redshift de la ley de Hubble-Lemaître.

Práctica 4. Curva de rotación y materia oscura.

Práctica 5. Estructura del universo a gran escala.

Ejercicios y problemas relacionados con el temario teórico

BIBLIOGRAFÍA

BIBLIOGRAFÍA FUNDAMENTAL

BIBLIOGRAFÍA FUNDAMENTAL:

- Binney, J., Merrixield, M.: Galactic Astronomy. Princeton University Press.
- Böhm-Vitense, E.: Introduction to Stellar Astrophysics (Vol 1-3). Cambridge University Press.
- Bowers, R., Deeming, T.: Astrophysics Vol. I & II. Jones and Bartlett Publishers Inc.
- Caroll, B.W., Ostlie, D.A.: An Introduction to Modern Galactic Astrophysics and Cosmology. Pearson, Adison & Wesley.
- Clayton, D.D.: Principles of Stellar Evolution and Nucleosynthesis. University Chicago Press.
- Gray, D.F.: The Observation and Analysis of Stellar Phothospheres. Cambridge University Press.
- Sparke, L.S., Gallagher, J.S.: Galaxies in the Universe. Cambridge University Press.
- Schneider, P.: Extragalactic Astronomy and Cosmology. Springer Verlag.

BIBLIOGRAFÍA COMPLEMENTARIA

- Combes, F. et al.: Galaxies and Cosmology. Springer.
- Glendening, N.K.: Compact Stars. Springer.
- Kippenhahn, R., & Weigert, A.: Stellar Structure and Evolution. Springer Verlag.
- Longair, M.S..: Galaxy Formation. Springer.
- Mihalas, D.: Stellar Atmospheres. W.H. Freemand & Co.

ENLACES RECOMENDADOS

- · NASA/IPAC Extragalactic Database: http://nedwww.ipac.caltech.edu/
- · Artículos especializados en astrofísica: http://adsabs.harvard.edu/abstract_service.html
- · Sociedad Española de Astronomía: http://sea.am.ub.es/
- Instituto de Astrofísica de Canarias: http://www.iac.es/
- · Instituto de Astrofísica de Andalucía: http://www.iaa.es/
- Astronomical Database: http://simbad.u-strasbg.fr/simbad/

METODOLOGÍA DOCENTE

• MD01 - Lección magistral/expositiva

EVALUACIÓN (instrumentos de evaluación, criterios de evaluación y porcentaje sobre la calificación final)

EVALUACIÓN ORDINARIA

3 / 4

Convocatoria Ordinaria:

- Examen: 60%.
- Prácticas/problemas/cuestionarios: 30%-40% (el % menor si se realizan seminarios).
- · Seminarios: 0-10% (el % mayor solo en caso de realizarse).

EVALUACIÓN EXTRAORDINARIA

La convocatoria extraordinaria consistirá en las mismas pruebas que la evaluación única final.

EVALUACIÓN ÚNICA FINAL

El alumno que, siguiendo la normativa de la UGR en los términos y plazos que en ella se exigen, se acoja a esta

modalidad de evaluación, realizará un examen de conocimientos (60%) y de resolución de problemas/prácticas (40%) para aprobar la asignatura.