Guía docente de la asignatura

Estadística (2461117)

Fecha de aprobación: 22/06/2023

Grado	Grado en Ingeniería Civil (Plan 2023)			Rama		Ingeniería y Arquitectura		
Módulo	Materias Básicas			Materia	a	Matemáticas		
Curso 1	O Semest	re 2 ⁰	Créditos	6	7	Гіро	Troncal	

PRERREQUISITOS Y/O RECOMENDACIONES

Se recomienda tener cursada la asignatura Cálculo.

BREVE DESCRIPCIÓN DE CONTENIDOS (Según memoria de verificación del Grado)

Estadística descriptiva. Distribuciones de probabilidad. Inferencia estadística. Optimización en la Investigación Operativa.

RESULTADOS DEL PROCESO DE FORMACIÓN Y APRENDIZAJE

CONOCIMIENTOS O CONTENIDOS

• Co1 - Conoce y comprende las matemáticas y otras ciencias básicas inherentes a la ingeniería civil

COMPETENCIAS

- COM01 Poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio.
- COMO2 Aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio.
- COMo3 Tener la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética.
- COM05 Haber desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía.

- COMo6 Poseer la capacidad de análisis y síntesis.
- COM07 Poseer la capacidad de organización y planificación.
- COMo8 Comunicar de forma oral y/o escrita.
- COM09 Ser capaz de estar al día en las novedades de ciencia y tecnología.
- COM10 Poseer la capacidad de gestión de la información.
- COM11 Tener capacidad para la resolución de problemas.
- COM12 Ser capaz de trabajar en equipo.
- COM13 Aplicar el razonamiento crítico
- COM14 Aprender de forma autónoma
- COM15 Integrar creatividad
- COM16 Integrar iniciativa y espíritu emprendedor
- COM17 Participar en la internacionalización e interculturalidad.
- COM18 Contribuir al logro de las metas de los ODS incluidas en la categoría Personas (ODS 1, ODS 2, ODS 3, ODS 4 y ODS 5).
- COM20 Contribuir al logro de las metas de los ODS incluidas en la categoría Prosperidad (ODS 7, ODS 8, ODS 9, ODS 10, ODS 11).
- COM22 Capacitación científico-técnica para el ejercicio de la profesión de Ingeniero Técnico de Obras Públicas y conocimiento de las funciones de asesoría, análisis, diseño, cálculo, proyecto, construcción, mantenimiento, conservación y explotación.
- COM23 Comprensión de los múltiples condicionamientos de carácter técnico y legal que se plantean en la construcción de una obra pública, y capacidad para emplear métodos contrastados y tecnologías acreditadas, con la finalidad de conseguir la mayor eficacia en la construcción dentro del respeto por el medio ambiente y la protección de la seguridad y salud de los trabajadores y usuarios de la obra pública.
- COM32 Capacidad para la resolución de los problemas matemáticos que puedan plantearse en la ingeniería. Aptitud para aplicar los conocimientos sobre: álgebra lineal; geometría; geometría diferencial; cálculo diferencial e integral; ecuaciones diferenciales y en derivadas parciales; métodos numéricos; algorítmica numérica; estadística y optimización.

HABILIDADES O DESTREZAS

- HD02 Analiza productos, procesos y sistemas complejos en su campo de estudio; elije y
 aplica de forma pertinente métodos analíticos, de cálculo y experimentales ya
 establecidos e interpreta correctamente los resultados de dichos análisis.
- HD03 Identifica, formula y resuelve problemas de ingeniería en su especialidad; elije y
 aplica de forma adecuada métodos analíticos, de cálculo y experimentales ya
 establecidos; reconoce la importancia de las restricciones sociales, de salud y seguridad,
 ambientales, económicas e industriales.
- HD06 Realiza búsquedas bibliográficas, consultar y utilizar con criterio bases de datos y otras fuentes de información, para llevar a cabo simulación y análisis con el objetivo de realizar investigaciones sobre temas técnicos de su especialidad.
- HD08 Posee la capacidad y destreza para proyectar y lleva a cabo investigaciones experimentales, interpretar resultados y llegar a conclusiones en el campo de la ingeniería civil.
- HD11 Recoge e interpreta datos y manejar conceptos complejos dentro de su especialidad, para emitir juicios que impliquen reflexión sobre temas éticos y sociales.
- HD15 Reconoce la necesidad de la formación continua propia y de emprender esta actividad a lo largo de su vida profesional
- HD16 Está al día en las novedades en ciencia y tecnología.

PROGRAMA DE CONTENIDOS TEÓRICOS Y PRÁCTICOS

TEÓRICO

Tema 1. ESTADÍSTICA UNIDIMENSIONAL

- Introducción. Conceptos básicos
- Distribución de frecuencias unidimensional
- Características de posición
- Características de dispersión
- Características de forma

Tema 2. ESTADÍSTICA BIDIMENSIONAL

- Distribución de frecuencias bidimensional
- Distribuciones marginales y condicionadas. Características
- Covarianza
- Independencia y dependencia estadística
- Regresión simple. Conceptos básicos
- Regresión lineal simple mínimo cuadrática. Ajuste de las rectas de regresión
- Ajuste de modelos no lineales
- Análisis de la correlación

Tema 3. PROBABILIDAD

- Introducción. Fenómenos aleatorios
- Nociones y resultados básicos
- Concepción axiomática de probabilidad. Asignación de probabilidades
- Probabilidad condicionada
- Teoremas básicos
- Independencia de sucesos

Tema 4. VARIABLE ALEATORIA

- Noción de variable aleatoria. Función de distribución
- Variables aleatorias discretas y continuas
- Esperanza Matemática. Otras características
- Vectores aleatorios. Independencia estocástica

Tema 5. MODELOS DE DISTRIBUCIONES DE PROBABILIDAD

- Modelos de probabilidad discretos: distribución de Bernouilli, Binomial, Poisson
- Modelos de probabilidad continuos: distribución Normal. Otras distribuciones
- Distribuciones univariantes relacionadas con la Normal

Tema 6. INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA. ESTIMACIÓN

- Introducción a la Inferencia estadística. Nociones básicas
- Estadísticos muestrales y distribuciones en el muestreo.
- Muestreo en poblaciones Normales
- Estimación Puntual. Conceptos y resultados básicos
- Estimación por intervalos de confianza. Conceptos y resultados básicos
- Intervalos de confianza en poblaciones Normales

Tema 7. CONTRASTE DE HIPÓTESIS

- Generalidades. Conceptos básicos
- Pautas para la resolución de contrastes de hipótesis paramétricos
- Contrastes de hipótesis clásicos para los parámetros de una y dos poblaciones Normales independientes

Tema 8. INTRODUCCIÓN A LA PROGRAMACIÓN LINEAL

- Introducción. Optimización en la Investigación operativa
- Planteamiento de un problema de Programación lineal
- Resolución de un problema de Programación lineal. El método gráfico
- El método Simplex

PRÁCTICO

• Problemas en pizarra

Se realizarán sesiones de problemas en pizarra sobre los contenidos formativos del temario.

• Prácticas en ordenador

Se realizarán prácticas en ordenador sobre sobre los contenidos formativos del temario utilizando software estadístico y/o software libre.

BIBLIOGRAFÍA

BIBLIOGRAFÍA FUNDAMENTAL

- Cánavos, G.C. (2003). Probabilidad y Estadística. McGraw-Hill.
- Mendenhall, W. y Sincich, T. (2007). Probabilidad y Estadística para Ingeniería y Ciencias. Prentice Hall.
- Milton, J.S. y Arnold, J.C. (2004). Probabilidad y Estadística (con aplicaciones para Ingeniería y Ciencias computacionales). McGraw-Hill Interamericana.
- Montgomery, D.C. and Runger G.C. (2006) Applied Statistics and Probability engineers. Wiley and Sons.
- Peña Sánchez-Rivera, D. (2001). Estadística. Modelos y Métodos, Vol. 1. Alianza Editorial.
- Pérez C. (2001). Técnicas estadísticas con SPSS. Prentice-Hall.
- Rosales Moreno, M.J. (2016). Estadística básica. Introducción a la Programación lineal. Editorial Técnica Avicam.
- Ross, S.M. (2007). Introducción a la Estadística. McGraw-Hill.
- Spiegel, M.R., Schiller, J. Srinivasan, R.V. (2002). Probability and Statistics. McGraw-Hill, New York.
- Walpole, R., Myers, R., Myers S.L. (2012). Probabilidad y Estadística para Ingenieros. Prentice Hall.

BIBLIOGRAFÍA COMPLEMENTARIA

- Arreola Risa, J.S. y Arreola Risa, A. (2003). Programación lineal: una introducción a la toma de decisiones. International Thomson.
- Balbás de la Corte, A.; Gil, J.A. (2005). Programación matemática. Editorial AC.
- DeGroot, M.H. (2002). Probabilidad y Estadística. Adisson-Wesley.
- Fernández-Abascal, H., Guijarro, M., Rojo, J.L. y Sanz, J.A. (1994). Cálculo de probabilidades y Estadística. Ariel Economía S.A.
- González Manteiga, M.T. y Pérez de Vargas Luque, A, (2009). Estadística aplicada. Una visión instrumental. Ediciones Díaz de Santos.
- Peña Sánchez-Rivera, D. (2008). Fundamentos de Estadística. Alianza Editorial.
- Ríos-Insua, S., Mateos, A., Bielza, M. C. y Jiménez, A. Investigación Operativa. Modelos determinísticos y estocásticos. Centro de Estudios Ramón Areces, 2004.

ENLACES RECOMENDADOS

https://prado.ugr.es

https://www.phpsimplex.com

ACTIVIDADES FORMATIVAS Y METODOLOGÍAS DOCENTES

4/6

- MD01 Exposiciones en clase del docente. Podrán ser: 1) Lección magistral: presentación de conceptos teóricos y desarrollo de contenidos; 2) Clases de problemas: resolución de supuestos prácticos; 3) Seminarios: ampliación y profundización en aspectos concretos; 4) Aula invertida: transferencia del proceso de aprendizaje fuera de la clase. Se motivará al estudiantado a la reflexión, para el descubrimiento de las relaciones entre conceptos y tratando de formarle mentalidad crítica; se fomentará la participación y el debate; se optimizará el tiempo presencial para facilitar y potenciar otros procesos de adquisición y práctica de conocimientos y competencias.
- MD02 Prácticas bajo supervisión del docente. Podrán ser: 1) En aula: resolución de casos analítica o numéricamente; 2) De laboratorio: supuestos reales; 3) De campo: visitas en grupo a obra, instalaciones y empresas; 4) Aprendizaje basado en proyectos o casos prácticos. El estudiantado adquirirá las destrezas y competencias necesarias para la aplicación de conocimientos; desarrollará habilidades instrumentales y competencias prácticas; contextualizará conocimientos y su implantación; aprenderá a resolver
- MD03 Trabajos de forma no presencial. Actividades propuestas por el docente para realizar individualmente o en grupo. Los estudiantes presentarán en público, desarrollando las habilidades, destrezas y competencias transversales de la materia; mejorarán el aprendizaje cooperativo, mediante la interacción entre estudiantes, y con el docente con un enfoque interactivo de organización del trabajo.
- MD04 Tutorías académicas. Personalizadas o en grupo donde el docente supervisará el desarrollo del trabajo no presencial, reorientará a los estudiantes en aspectos que detecte y aconsejará sobre bibliografía.
- MD05 Exámenes. Actividad que podrá formar parte del procedimiento de evaluación.

EVALUACIÓN (instrumentos de evaluación, criterios de evaluación y porcentaje sobre la calificación final)

EVALUACIÓN ORDINARIA

Se utilizará un sistema de evaluación diversificado, seleccionando las técnicas de evaluación más adecuadas que permitan poner de manifiesto los diferentes conocimientos y capacidades adquiridos por el alumnado al cursar la asignatura.

La calificación global, que responde a la puntuación ponderada de los diferentes aspectos y actividades que integran el sistema de evaluación de la asignatura, se detalla a continuación.

- Examen final de teoría y problemas: 70%
- Pruebas de evaluación continua (cuestiones teóricas y problemas que serán resueltos y entregados en el aula): 20%
- Evaluación de las prácticas en ordenador: 10%. Cada sesión de prácticas en ordenador será evaluada a su finalización en el aula (4%). Además, se realizarán dos pruebas de evaluación continua que valorarán competencias adquiridas (6%).

Para superar la asignatura, el alumno debe obtener en el examen final una puntuación mínima superior a 3 sobre 7 puntos. En caso contrario, la calificación final será la menor entre la calificación obtenida según la ponderación expuesta y 4.5 (suspenso).

El alumno que decida no presentarse al examen final de teoría y problemas de la asignatura, tendrá la calificación "No presentado".

EVALUACIÓN EXTRAORDINARIA

La evaluación en las convocatorias extraordinarias consistirá en:

• Examen de teoría y problemas: 90%

• Examen de prácticas en ordenador: 10% El alumno que decida no presentarse al examen de teoría y problemas obtendrá la calificación "No presentado".

EVALUACIÓN ÚNICA FINAL

La **evaluación única final,** a la que el alumno se puede acoger en los casos indicados en la "Normativa de Evaluación y de Calificación de los Estudiantes de la Universidad de Granada (art. 8)" consistirá en:

- Examen de teoría y problemas: 90%
- Examen de prácticas en ordenador: 10%

El alumno que decida no presentarse al examen de teoría y problemas obtendrá la calificación "No presentado".