Guía docente de la asignatura

EUR-ACE®

Fecha de aprobación: 28/06/2023

Resistencia de Materiales (2051123)

Grado		Grado en Ingeniería Electrónica Industrial			Rama		Ingeniería y Arquitectura		
Módulo Común a la Rama Industria			rial	Materia	eria Electr		rotecnia		
Curso	2 ⁰	Semestre	1 ⁰	Créditos	6	7	Гіро	Obligatoria	

PRERREQUISITOS Y/O RECOMENDACIONES

Prerrequisitos: Tener cursadas las asignaturas Matemáticas I, Matemáticas II y Física I.

BREVE DESCRIPCIÓN DE CONTENIDOS (Según memoria de verificación del Grado)

Conocimiento y utilización de los principios de Resistencia de Materiales. Ensayo práctico de las propiedades mecánicas de los materiales en laboratorio.

COMPETENCIAS ASOCIADAS A MATERIA/ASIGNATURA

COMPETENCIAS ESPECÍFICAS

- CE09 Conocimientos de los fundamentos de ciencia, tecnología y química de materiales. Comprender la relación entre la microestructura, la síntesis o procesado y las propiedades de los materiales
- CE16 Conocimientos básicos y aplicación de tecnologías medioambientales y
- CE85 Conocimiento en materias básicas y tecnológicas, que les capacite para el aprendizaje de nuevos métodos y teorías, y les dote de versatilidad para adaptarse a nuevas situaciones.
- CE86 Capacidad de resolver problemas con iniciativa, toma de decisiones, creatividad, razonamiento crítico y de comunicar y transmitir conocimientos, habilidades y destrezas en el campo de la Ingeniería Industrial.
- CE89 Capacidad de analizar y valorar el impacto social y medioambiental de las soluciones técnicas.
- CE90 Capacidad para aplicar los principios y métodos de la calidad.
- CE92 Capacidad de trabajar en un entorno multilingüe y multidisciplinar.

COMPETENCIAS TRANSVERSALES

- CT01 Capacidad para el uso y aplicación de las TIC en el ámbito académico y profesional
- CT02 Capacidad para innovar y generar nuevas ideas. Creatividad.
- CT03 Respeto a los derechos fundamentales y de igualdad entre hombres y mujeres

RESULTADOS DE APRENDIZAJE (Objetivos)

- Iniciar al alumno en la disciplina de Resistencia de Materiales, introduciendo los conceptos básicos para el inicio del estudio de la misma.
- Estudiar los distintos esfuerzos: axil, momento flector, cortante y torsor, siendo capaz de calcular tensiones y deformaciones que producen, así como de calcular los movimientos en estructuras isostáticas y en hiperestáticas sencillas.
- Estudiar el principio de los trabajos virtuales dentro del ámbito de la Resistencia de Materiales.
- Comprender el fenómeno de pandeo como proceso de inestabilidad y poder aplicarlo a casos básicos.
- Estudio del estado de tensión plana y su aplicación al cálculo de estructuras sometidas a presión, tuberías y vigas con cargas combinadas.

PROGRAMA DE CONTENIDOS TEÓRICOS Y PRÁCTICOS

TEÓRICO

- Tema 1 Introducción
 - 1.1. Sólido deformable y prisma mecánico y principios de la Resistencia de Materiales.
 - 1.2. Tipos de solicitaciones. Equilibrio. Apoyos
 - 1.3. Tensión y deformación.
 - 1.4. Esfuerzos y equilibrio interno.

Problemas de equilibrio.

- Tema 2 Compresión y Tracción
 - 2.1 Introducción.
 - 2.2 Tensiones debidas a esfuerzo axil.
 - o 2.3 Deformaciones debidas a esfuerzo axil.

Problemas de compresión y tracción.

- Tema 3 Torsión
 - 3.1. Introducción.
 - 3.2. Tensión tangencial, deformación angular y Ley de Hooke.
 - 3.3. Deformaciones por torsión en barras circulares.
 - 3.4. Tensiones tangenciales producidas por torsión.
 - 3.5. Transmisión de potencia por medio de ejes circulares.

Problemas de torsión.

- Tema 4 Flexión
 - 4.1. Deformación de la rebanada a flexión pura.
 - 4.2. Ecuación de la elástica.
 - 4.3. Conceptos asociados: módulo resistente, giro y curvatura.

Problemas de flexión.

- Tema 5 Movimientos
 - 5.1. Introducción.
 - 5.2. Ecuación de la elástica.
 - 5.3. Sistemas hiperestáticos.

Problemas de movimientos.

- Tema 6 Cortante
 - 6.1. Introducción
 - 6.2. Esfuerzo cortante en flexión simple.
 - 6.3. Centro de cortantes.

Problemas de compresión y tracción.

- Tema 7 Principio de los Trabajos Virtuales
 - 7.1. Enunciado.
 - 7.2. Demostración.
 - 7.3. Uso del Principio de los Trabajos Virtuales para determinación de esfuerzos y deformadas.

Problemas de principio de los trabajos virtuales.

- Tema 8 Pandeo
 - 8.1. Introducción.
 - 8.2. Modelo simplificado.
 - 8.3. Pandeo de una columna elástica.

Problemas de pandeo.

- Tema 9 Estado de tensión plana
 - 9.1. Introducción.
 - 9.2. Tensiones principales y tensiones tangenciales máximas.
 - o 9.3. Circulo de Mohr para tensión plana.

Problemas de estados de tensión plana.

PRÁCTICO

- Prácticas de Laboratorio de flexión y torsión
- Prácticas de Laboratorio de determinación de constantes elásticas por ultrasonidos
- Aprendizaje basado en proyectos

BIBLIOGRAFÍA

BIBLIOGRAFÍA FUNDAMENTAL

• Resistencia de Materiales para Ingeniería Electrónica. Lucía Comino, Guillermo Rus, Juan Melchor, Ed. Godel, 2015.

BIBLIOGRAFÍA COMPLEMENTARIA

- Resistencia de Materiales. Ortiz Berrocal. 3ª Ed. Mc Graw Hill.
- Mecanica de Materiales. Gere-Timoshenko. 2ª Ed. Grupo Editorial Iberoamericana.
- Mecánica de Materiales. Ferdinand P. Beer, E. Russell Johnston Jr., John T. Dewolf, David F. Mazurek.
- Introduccion a la Mecanica de Solidos. Popov. Ed. Limusa.
- Mecánica Vectorial Para Ingenieros: Estática. Beer-Johnston. Mc Graw Hill
- Resistencia de Materiales. Feodosiev. Ed. Mir, Moscú.
- Resistencia de Materiales. Stiopin. Ed. Mir, Moscú.
- Problemas de Resistencia de Materiales. Miroliubov y Otros. Ed. Mir, Moscú.
- Problemas de Resistencia de Materiales. Rodríguez Avial. Ed. Dossat.
- Resistencia de Materiales. Nash. Serie de Compendios Schaum. Mc Graw-Hill.

IIIII (1). OIIIVEI SIGAU UE OIA

3 / 5

ENLACES RECOMENDADOS

Guillermo Rus Carlborg

METODOLOGÍA DOCENTE

- MD01 EXPOSICIONES EN CLASE POR PARTE DEL PROFESOR. Podrán ser de tres tipos: 1) Lección magistral: Se presentarán en el aula los conceptos teóricos fundamentales y se desarrollarán los contenidos propuestos. Se procurará transmitir estos contenidos motivando al alumnado a la reflexión, facilitándole el descubrimiento de las relaciones entre diversos conceptos y tratando de formarle una mentalidad crítica 2) Clases de problemas: Resolución de problemas o supuestos prácticos por parte del profesor, con el fin de ilustrar la aplicación de los contenidos teóricos y describir la metodología de trabajo práctico de la materia. 3) Seminarios: Se ampliará y profundizará en algunos aspectos concretos relacionados con la materia. Se tratará de que sean participativos, motivando al alumno a la reflexión y al debate.
- MD02 PRÁCTICAS REALIZADAS BAJO SUPERVISIÓN DEL PROFESOR. Pueden ser individuales o en grupo: 1) En aula/aula de ordenadores: supuestos susceptibles de ser resueltos de modo analítico o numérico. Se pretende que el alumno adquiera la destreza y competencias necesarias para la aplicación de conocimientos teóricos o normas técnicas relacionadas con la materia. 2) De laboratorio/laboratorio virtual: supuestos reales relacionados con la materia, principalmente en el laboratorio aunque, en algunos casos, se podrá utilizar software de simulación a modo de laboratorio virtual. El objetivo es desarrollar las habilidades instrumentales y las competencias de tipo práctico, enfrentándose ahora a la complejidad de los sistemas reales. 3) De campo: se podrán realizar visitas en grupo a empresas relacionadas, con el fin de desarrollar la capacidad de contextualizar los conocimientos adquiridos y su implantación en una factoría, teniendo en cuenta los valores e intereses de la actividad empresarial.
- MD03 TRABAJOS REALIZADOS DE FORMA NO PRESENCIAL: Podrán ser realizados individualmente o en grupo. Los alumnos presentarán en público los resultados de algunos de estos trabajos, desarrollando las habilidades y destrezas propias de la materia, además de las competencias transversales relacionadas con la presentación pública de resultados y el debate posterior, así como la puesta en común de conclusiones en los trabajos no presenciales desarrollados en grupo. Las exposiciones podrán ser: 1) De problemas o casos prácticos resueltos en casa 2) De trabajos dirigidos
- MD04 TUTORÍAS ACADÉMICAS: podrán ser personalizadas o en grupo. En ellas el profesor podrá supervisar el desarrollo del trabajo no presencial, y reorientar a los alumnos en aquellos aspectos en los que detecte la necesidad o conveniencia, aconsejar sobre bibliografía, y realizar un seguimiento más individualizado, en su caso, del trabajo personal del alumno.
- MD05 EXÁMENES. Se incluye también esta actividad, que formará parte del procedimiento de evaluación, como parte de la metodología.

EVALUACIÓN (instrumentos de evaluación, criterios de evaluación y porcentaje sobre la calificación final)

EVALUACIÓN ORDINARIA

 Examen/Pruebas teórico-prácticas (70%). Un examen final. Actividad Formativa AF5. Metodología Docente MD5. Sistema de Evaluación SE1.

irma (1): **Universidad de Granada**

- Prácticas de laboratorio de grupo (15%). Sistema de Evaluación SE4.
- Aprendizaje Basado en Proyectos (15%). Sistema de Evaluación SE3 y SE4.
- Se exigirá nota mínima en cada una de las tres partes: 4.5/10 en examen, prácticas y
- Nota personalizada: el profesor tendrá libertad para cambios justificados en la nota en base a participación activa, problemas realizados y expuestos en clase, ciertas iniciativas de alumnos, y prevalecerá el juicio del profesor sobre la madurez en la materia del alumno. Sistema de Evaluación SE2.
- No se guardará la nota obtenida en años anteriores en ninguna de las tres partes (examen, prácticas y proyecto).
- Todo lo relativo a la evaluación se regirá por la normativa sobre planificación docente y organización de exámenes vigente en la Universidad de Granada.

EVALUACIÓN EXTRAORDINARIA

En el caso de convocatoria extraordinaria, sólo se contabilizará la nota del examen teóricopráctico en un 100%, no las prácticas de laboratorio ni nota personalizada.

EVALUACIÓN ÚNICA FINAL

En caso de optar por la evaluación única, el examen final consistirá en un examen teórico práctico del programa de la asignatura en la fecha indicada por el Centro y tendrá una validez del 100%.

