Guía docente de la asignatura

Fecha última actualización: 14/06/2021

Fecha de aprobación:

Análisis Matemático: 14/06/2021

Álgebra: 15/06/2021

Grado		Grado en Ingeniería Informática (Ceuta)					Ingeniería y Arquitectura		
Módulo	Formación Básica				Materi	a	Matemáticas		
Curso	1 ⁰	Semestre	2 ⁰	Créditos	6	7	Гіро	Troncal	

PRERREQUISITOS Y/O RECOMENDACIONES

Se recomienda haber cursado las Matemáticas de 2º de Bachillerato de Ciencias y Tecnología

BREVE DESCRIPCIÓN DE CONTENIDOS (Según memoria de verificación del Grado)

- Cálculo diferencial en una variable
- Cálculo integral en una variable
- Métodos numéricos para cálculo diferencial e integral
- · Algoritmos numéricos

COMPETENCIAS ASOCIADAS A MATERIA/ASIGNATURA

COMPETENCIAS ESPECÍFICAS

 CE01 - Capacidad para la resolución de los problemas matemáticos que puedan plantearse en la ingeniería. Aptitud para aplicar los conocimientos sobre: álgebra lineal; cálculo diferencial e integral; métodos numéricos; algorítmica numérica; estadística y optimización.

RESULTADOS DE APRENDIZAJE (Objetivos)

- Conocer las propiedades algebraicas y de orden de los números reales operando con desigualdades y valores absolutos.
- Conocer y aplicar los conceptos fundamentales relativos a sucesiones y series numéricas.

- Conocer e identificar las principales funciones elementales y sus propiedades fundamentales.
- Comprender y trabajar intuitiva, geométrica y formalmente las nociones de límite, continuidad, derivada e integral, así como conocer los resultados fundamentales relativos a los mismos y aplicarlos convenientemente.
- Estudiar extremos de funciones y saberlos utilizar en el estudio y resolución de problemas sencillos de optimización.
- Representar funciones y deducir propiedades de una función a partir de su gráfica.
- Modelizar situaciones poco complejas, resolviéndolas con las herramientas del Cálculo, en particular, saber aplicar las integrales definidas a problemas geométricos y de otros campos.
- Manejar los aspectos esenciales del cálculo infinitesimal en un paquete de cálculo simbólico (Maxima) y visualización gráfica.
- Comprender cómo se almacenan los números en un ordenador, los errores que ello introduce y experimentar cómo se propagan en los cálculos.
- Conocer y saber los métodos directos e iterativos de resolución de sistemas de ecuaciones lineales.
- Saber localizar y aproximar ceros de funciones.
- Entender el concepto y conocer las técnicas habituales de interpolación y ajuste polinomial.
- Saber obtener y aplicar las fórmulas elementales de derivación e integración numérica.
- Saber resolver problemas simples con técnicas numéricas mediante el ordenador.

PROGRAMA DE CONTENIDOS TEÓRICOS Y PRÁCTICOS

TEÓRICO

El siguiente temario incluye tanto la parte teórica como las prácticas de ordenador

- Tema 1. Números reales y aritmética de ordenador
 - El conjunto de los números reales
 - Errores
 - Funciones elementales
- Tema 2. Continuidad v derivabilidad
 - o Teoremas de Bolzano y Weierstrass
 - Teoremas de Rolle. Crecimiento. Máximos y mínimos. Representación gráfica de funciones.
 - Métodos numéricos de resolución de ecuaciones: bisección y Newton-Raphson.
- Tema 3. Integrabilidad
 - Integración de funciones continuas. Teorema Fundamental del Cálculo Integral.
 Regla de Barrow.
 - Cálculo de primitivas.
 - Integrales impropias.
 - Aplicaciones de la integral. Cálculo de áreas, longitudes de curvas y volúmenes.
 - Métodos de aproximación numérica.
- Tema 4. Sucesiones y series
 - Convergencia, monotonía y acotación. Cálculo de límites. Indeterminaciones.
 Criterios de parada.
 - Series de términos positivos y series alternadas. Criterios de convergencia.
- Tema 5. Interpolación numérica
 - o Métodos de interpolación polinómica. Polinomio de Taylor.

2/4

- Métodos de Lagrange y de Newton.
- Tema 6. Resolución de sistemas de ecuaciones

PRÁCTICO

Las prácticas de ordenador tendrán como objetivo que los estudiantes aprendan a usar las posibilidades gráficas y de cálculo del programa Maxima como apoyo eficaz tanto para la comprensión conceptual como para la resolución de ejercicios. Su desarrollo se hará al mismo tiempo que el desarrollo teórico.

BIBLIOGRAFÍA

BIBLIOGRAFÍA FUNDAMENTAL

- J. Alaminos, C. Aparicio, J. Extremera, P. Muñoz y A. Villena. Cálculo. Ediciones E-LectoLibris.
- Richard Burden, J. Douglas Faires. Análisis Numérico. Thomson-Learning, 2004.
- Jon Rogawski. Cálculo (una variable). Editorial Reverté.
- James Stewart. Cálculo de una variable (Trascendentes tempranas). International Thomson Editores, 2001.

BIBLIOGRAFÍA COMPLEMENTARIA

En la plataforma <u>PRADO</u> de la UGR se pondrá a disposición del alumno material adicional de la asignatura.

ENLACES RECOMENDADOS

• Departamento de Análisis Matemático

METODOLOGÍA DOCENTE

- MD01 Lección Magistral (Clases Teóricas-Expositivas)
- MD02 Actividades Prácticas (Resolución de Problemas, Resolución de Casos Prácticos, Desarrollo de Proyectos, Prácticas en Laboratorio, Taller de Programación, Aula de Informática, Prácticas de Campo).
- MD03 Seminarios (Debates, Demos, Exposición de Trabajos Tutelados, Conferencias, Visitas Guiadas, Monografías).
- MD04 Actividades no presenciales Individuales.
- MD05 Actividades no presenciales Grupales.
- MD06 Tutorías Académicas.

EVALUACIÓN (instrumentos de evaluación, criterios de evaluación y porcentaje sobre la calificación final)

3/4

EVALUACIÓN ORDINARIA

- Para la parte teórica se realizarán dos exámenes parciales (no eliminatorios individualmente) y/o un examen final. La ponderación de este bloque será del 70%. No se tendrá en cuenta la nota media de los exámenes parciales si en alguno de ellos se ha obtenido una calificación inferior a tres y medio sobre diez. La nota final de esta parte será la mejor de las obtenidas en el examen final y la media de los exámenes parciales.
- La calificación de la parte práctica se obtendrá mediante la realización de dos pruebas a lo largo del curso y/o mediante un examen final. La ponderación de este bloque será del 30%. La nota final de esta parte será la mejor de las obtenidas en las pruebas y el examen final.

EVALUACIÓN EXTRAORDINARIA

- Para la parte teórica se realizarán dos exámenes parciales (no eliminatorios individualmente) y/o un examen final. La ponderación de este bloque será del 70%. No se tendrá en cuenta la nota media de los exámenes parciales si en alguno de ellos se ha obtenido una calificación inferior a tres y medio sobre diez. La nota final de esta parte será la mejor de las obtenidas en el examen final y la media de los exámenes parciales.
- La calificación de la parte práctica se obtendrá mediante la realización de dos pruebas a lo largo del curso y/o mediante un examen final. La ponderación de este bloque será del 30%. La nota final de esta parte será la mejor de las obtenidas en las pruebas y el examen final.

EVALUACIÓN ÚNICA FINAL

Aquellos estudiantes que, siguiendo la Normativa de la UGR en los términos y plazos que en ella se exigen, se acojan a esta modalidad de evaluación, realizarán solamente la prueba final escrita, incluyendo la parte teórica y la de prácticas con ordenador, y la puntuación obtenida en ella representará el 100% de la calificación final.

Todo lo relativo a la evaluación se regirá por la <u>Normativa de evaluación y calificación de los estudiantes</u> vigente en la Universidad de Granada.

na (1): Universidad de Grana

