Guía docente de la asignatura

Nuevos Paradigmas de Interacción (Especialidad Computación y Sistemas Inteligentes)

Fecha última actualización: 14/06/2021

Fecha de aprobación: 14/06/2021

Grado		Grado en Ingeniería Informática				Ingeniería y Arquitectura		
Módulo	Formación de Especialidad 1: Computación y Sistemas Inteligentes				Materia		Percepción	
Curso	4 ⁰	Semestre	1 ⁰	Créditos	6		Гіро	Obligatoria

PRERREQUISITOS Y/O RECOMENDACIONES

No es obligatorio que los alumnos tengan aprobadas asignaturas, materias o módulos, pero se recomienda que tengan aprobadas las asignaturas de programación de primero y segundo.

BREVE DESCRIPCIÓN DE CONTENIDOS (Según memoria de verificación del Grado)

- Escenarios y paradigmas de interacción.
- Métodos de interacción basados en gestos y movimiento.
- Interacción háptica.
- Interacción con dispositivos móviles.
- Interacción en entornos de realidad virtual.
- Sistemas de diálogo.
- Interacción por voz.

COMPETENCIAS ASOCIADAS A MATERIA/ASIGNATURA

COMPETENCIAS GENERALES

- CG01 Capacidad para concebir, redactar, organizar, planificar, desarrollar y firmar proyectos en el ámbito de la ingeniería en informática que tengan por objeto, de acuerdo con los conocimientos adquiridos, la concepción, el desarrollo o la explotación de sistemas, servicios y aplicaciones informáticas.
- CG02 Capacidad para dirigir las actividades objeto de los proyectos del ámbito de la informática de acuerdo con los conocimientos adquiridos.
- CG05 Capacidad para concebir, desarrollar y mantener sistemas, servicios y aplicaciones informáticas empleando los métodos de la ingeniería del software como instrumento para el aseguramiento de su calidad.

- CGo6 Capacidad para concebir y desarrollar sistemas o arquitecturas informáticas centralizadas o distribuidas integrando hardware, software y redes.
- CG08 Conocimiento de las materias básicas y tecnologías, que capaciten para el aprendizaje y desarrollo de nuevos métodos y tecnologías, así como las que les doten de una gran versatilidad para adaptarse a nuevas situaciones.
- CG09 Capacidad para resolver problemas con iniciativa, toma de decisiones, autonomía y creatividad. Capacidad para saber comunicar y transmitir los conocimientos, habilidades y destrezas de la profesión de Ingeniero Técnico en Informática.
- CG11 Capacidad para analizar y valorar el impacto social y medioambiental de las soluciones técnicas, comprendiendo la responsabilidad ética y profesional de la actividad del Ingeniero Técnico en Informática.

RESULTADOS DE APRENDIZAJE (Objetivos)

- Ser capaz de identificar y describir las características de diferentes escenarios de comunicación persona-ordenador.
- Conocer dispositivos, sus diferentes modalidades de interacción y relación con tareas de usuario.
- Saber identificar las características de los paradigmas de interacción y sus metáforas.
- Saber concebir, diseñar y evaluar la tecnología y el método de interacción óptimo.
- Conocer el concepto, dispositivos y funcionamiento de la interacción háptica.
- Saber concebir, diseñar y evaluar la tecnología y el método de interacción óptimo.
 Conocer los fundamentos de la realidad virtual, incluyendo las técnicas de visualización y de tracking, y los dispositivos de interacción.
- Saber diseñar aplicaciones interactivas para entornos de realidad virtual y de realidad aumentada.
- Conocer el concepto, dispositivos y funcionamiento de la interacción por gestos o movimiento.
- Conocer y diseñar métodos de interacción para interfaces gestuales.
- Saber identificar las características de la interacción en entornos de computación ubicua.
- Conocer y diseñar interfaces para en entornos de computación móvil.
- Conocer las características de la interacción social y basada en grupos.
- Saber diseñar, evaluar y programar interfaces para la interacción social usando tecnología web.
- Conocer conceptos básicos sobre procesamiento de habla y gestión del diálogo.
- Saber diseñar sistemas de diálogo.
- Diseñar módulos de gestión de interfaces de usuario multimodales.

PROGRAMA DE CONTENIDOS TEÓRICOS Y PRÁCTICOS

TEÓRICO

- 1. Interacción Hombre-Máquina. Técnicas básicas de interacción.
- 2. Paradigmas y estilos de interacción. Nuevos dispositivos de interacción.
- 3. Fundamentos de Interacción multimodal.
- 4. Sistemas de diálogo e interacción oral.
- 5. Métodos de interacción basados en gestos y movimiento.
- 6. Interacción multimodal en dispositivos móviles.
- 7. Interacción en entornos virtuales: Realidad Virtual y Realidad Aumentada.

ma (1): **Universidad de Granad** F: **Q1818002F**

2/5

PRÁCTICO

Desarrollo e implementación de un proyecto que constará de las siguientes partes:

- Aplicación de escritorio con interacción gestual.
- Aplicación móvil multimodal.
- Aplicación con interacción por voz.
- Documentación del proyecto.

BIBLIOGRAFÍA

BIBLIOGRAFÍA FUNDAMENTAL

- Goldin, D., Smolka, S.A., Wegner, P. (2006). Interactive Computation: The New Paradigm. Ed. Springer.
- Kortum, P. (2008). HCI beyond the GUI: Design for Haptic, Speech, Olfactory and Other Nontraditional Interfaces. Amsterdam; Boston: Elsevier/Morgan Kaufmann.
- López-Cózar, R., Araki, M. (2005). Spoken, Multilingual and Multimodal Dialogue Systems: Development and Assessment. Chichester, England; Hoboken, NJ: John Wiley.
- McTear, M. F, Callejas, Z., Griol, D. (2016). The Conversational Interface. Talking to smart devices. Springer.
- Preece, J., Rogers, Y., Sharp, H. (2002). Interaction Design. John Wiley & Sons.
- Sherman, W. R., Craig, A. (2002). Understanding Virtual Reality: Interface, Application, and Design. Ed. Morgan Kaufmann.

BIBLIOGRAFÍA COMPLEMENTARIA

- Hainich, R. R. (2009). The End of Hardware: Augmented Reality and Beyond (3^a Ed.). Ed. BookSurge Publishing.
- Harris, R. A. (2005). Voice Interaction Design: Crafting the New Conversational Speech Systems. San Francisco, CA: Morgan Kaufmann Publishers.
- Hempel, T. (2008). Usability of Speech Dialog Systems. Berlin, Heidelberg: Springer Berlin Heidelberg.
- Kean, S., Hall, J., Perry, P. (2012). Meet the Kinect: An Introduction to Programming Natural User Interfaces". Ed. Apress.
- Preece, J., Rogers, Y., Sharp, H., Benyon, D., Holland, S., Carey, T. (1994). Human–Computer Interaction. Addison-Wesley.
- Suendermann, D. (2011). Advances in Commercial Deployment of Spoken Dialog Systems. New York. Springer Science+Business Media.
- Webb, J., Ashley, J. (2012). Beginning Kinect Programming with the Microsoft Kinect SDK. Ed. Apress.
- Weinschenk, S., Barker, D. T. (2000). Designing Effective Speech Interfaces. John Wiley & Sons

ENLACES RECOMENDADOS

Interacción Gestual

• Intel Realsense – https://www.intelrealsense.com/developers/

• Leap Motion – https://developer.leapmotion.com/

Dispositivos móviles - Wearables

- Android http://developer.android.com/index.html
- Android Wear https://developer.android.com/wear/index.html
- Google VR https://developers.google.com/vr/?hl=es

Procesamiento del habla y sistemas de diálogo

- http://onlinelibrary.wiley.com/doi/book/10.1002/0470021578 (disponible en biblioteca ETSIIT)
- http://www.springer.com/us/book/9783319329659 (acceso biblioteca UGR)

METODOLOGÍA DOCENTE

- MD01 Lección Magistral (Clases Teóricas-Expositivas)
- MDo2 Actividades Prácticas (Resolución de Problemas, Resolución de Casos Prácticos, Desarrollo de Proyectos, Prácticas en Laboratorio, Taller de Programación, Aula de Informática, Prácticas de Campo).
- MD03 Seminarios (Debates, Demos, Exposición de Trabajos Tutelados, Conferencias, Visitas Guiadas, Monografías).
- MD04 Actividades no presenciales Individuales.
- MD05 Actividades no presenciales Grupales.
- MD06 Tutorías Académicas.

EVALUACIÓN (instrumentos de evaluación, criterios de evaluación y porcentaje sobre la calificación final)

EVALUACIÓN ORDINARIA

Para los alumnos que sigan el sistema de evaluación continua

Aprendizaje por proyectos.

Se evaluará la adquisición de las competencias teórico-prácticas mediante la realización de distintos proyectos en grupo basados en un tema común. Cada proyecto se calificará mediante entrega y defensa, con una valoración máxima de:

- Interacción Gestual: 3 puntos.
- Interacción oral con un dispositivo móvil: 3 puntos.
- Sistema de Diálogo Oral: 2 puntos.
- Memoria del proyecto global y video promocional del mismo: 1 punto
- Trabajo individual tutelado: 1 punto

La calificación final (máximo de 10 puntos) se obtendrá de la suma de las calificaciones de las distintas partes en que se divide la asignatura, **pero será necesario aprobar cada una de las partes individualmente**.

EVALUACIÓN EXTRAORDINARIA

4/5

Se seguirán las mismas normas que en la convocatoria ordinaria según sea la evaluación escogida por el alumno. Las notas obtenidas en la convocatoria ordinaria se mantendrán hasta esta convocatoria.

EVALUACIÓN ÚNICA FINAL

Realización de una única prueba práctica que acreditará que el estudiante ha adquirido la totalidad de las competencias generales y específicas descritas en el apartado correspondiente de esta Guía Docente.

