Guía docente de la asignatura

Avances Históricos en Química Física: la Química Física

Fecha última actualización: 21/06/2021 Fecha de aprobación: 21/06/2021

Grado	Gra	Grado en Química				Rama Ciencias			
Módulo	Avances en Química Física y Química Física Biológica				Materia	a	Avances Históricos en Química Física: la Química Física		
Curso	4 ⁰	Semestre	2 ⁰	Créditos	6	-	Гіро	Optativa	

PRERREQUISITOS Y/O RECOMENDACIONES

Tener cursadas en el Grado de Química las asignaturas de Matemáticas, Física y Química General o equivalentes en otros grados.

Tener conocimientos adecuados sobre comprensión de textos en inglés científico.

BREVE DESCRIPCIÓN DE CONTENIDOS (Según memoria de verificación del Grado)

La Ciencia desde la Grecia Clásica hasta 1500. La revolución científica: la física de Newton. De la revolución de la química al atomismo. Calor, electricidad, magnetismo y luz. La Química Física: termodinámica química y estadística, electroquímica, cinética y espectroscopia. La revolución cuántica. Estructura atómica, enlace químico y moléculas. De las macromoléculas a la doble hélice: la Química Física en la revolución de la biología molecular y la biotecnología.

COMPETENCIAS ASOCIADAS A MATERIA/ASIGNATURA

COMPETENCIAS GENERALES

- CG01 El alumno deberá adquirir la capacidad de analizar y sintetizar
- CG02 El alumno deberá adquirir la capacidad de organizar y planificar
- CG03 El alumno deberá adquirir la capacidad de comunicarse de forma oral y escrita en la lengua oficial del Grado
- CG08 El alumno deberá adquirir la capacidad de trabajar en equipo
- CG09 El alumno deberá adquirir la capacidad de razonar críticamente
- CG10 El alumno deberá adquirir la capacidad de realizar un aprendizaje autónomo para su desarrollo continuo profesional

COMPETENCIAS ESPECÍFICAS

- CE29 El alumno deberá saber hacer o tener la capacidad de presentar, tanto de forma escrita como oral, material y argumentación científica a una audiencia especializada
- CE32 El alumno deberá saber hacer o tener la capacidad de gestionar y registrar de forma sistemática y fiable la documentación química
- CE46 El alumno deberá saber o conocer los fundamentos o principios de otras disciplinas necesarios para las distintas áreas de la Química.

RESULTADOS DE APRENDIZAJE (Objetivos)

Al finalizar esta materia el alumnado deberá: Dominar, en base a los hitos fundamentales en el desarrollo de la física y de la química, la necesidad, génesis y origen de la Química Física y de sus primeras etapas como Ciencia. Tener los conocimientos de la perspectiva general de los avances de la Química Física, los cómo y los por qué dentro de sus diversos contenidos, y la influencia de dichos avances en otras disciplinas.

PROGRAMA DE CONTENIDOS TEÓRICOS Y PRÁCTICOS

TEÓRICO

Tema 1. Introducción

- Introducción a la Historia de la Ciencia.
- La Física, la Química y la Química Física.

Tema 2. Orígenes y Desarrollo de la Ciencia

- La Ciencia Clásica desde los presocráticos al Helenismo.
- · La Edad Media.
- Religión y Ciencia

Tema 3. La Revolución Científica.

- De Copérnico a Galileo, Kepler y Descartes.
- Newton: la Física.
- Empirismo y Mecanicismo.
- Institucionalización de la Ciencia

Tema 4. Desarrollo de la Química

- Orígenes de la Química.
- Aires, oxidaciones y elementos.
- La Revolución Química.

Tema 5. La Física y la Química en el siglo XIX

- Calor, energía, electricidad y luz.
- El Atomismo, Química Orgánica y Tabla Periódica.

Tema 6. Origen de la Química Física

- Ostwald, Arrhenius, van 't Hoff.
- Termodinámica.
- Disoluciones y electrolitos.
- Cinética química.

Tema 7. Siglo XX

- Modelos atómicos: la mecánica cuántica.
- Química Física y Biología Molecular.

SEMINARIOS

1. Evolución y Revolución en Ciencia

- Revolución en Física vs Revolución en Química.
- 2. La Química y la Física en España en el primer tercio del siglo XX: la Química Física
 - La Química y la Física en la Edad de Plata de la Ciencia en España.
 - Origen de la Química Física en España y en la Universidad de Granada.

PRÁCTICO

No hay contenido práctico en esta asignatura

BIBLIOGRAFÍA

BIBLIOGRAFÍA FUNDAMENTAL

- 1. Laidler, K.J. (2001) The World of Physical Chemistry. Oxford University Press, New York.
- 2. Servos, J.W. (1996) Physical Chemistry from Ostwald to Pauling. Princeton University Press, Princeton, New Jersey.

Firma (1): Universidad de Granada OIF: Q1818002F

3/6

- 3. Solís, C. y Sellés, M. (2005) Historia de la Ciencia. Espasa Calpe, Madrid.
- 4. Ordoñez, J., Navarro, V. y Sánchez Ron, J.M. (2003) Historia de la Ciencia. Espasa Calpe. Madrid.
- 5. Comellas, J.L. (2007) Historia sencilla de la ciencia. Rialp. Madrid

BIBLIOGRAFÍA COMPLEMENTARIA

- 1. Cohen, I.B. (2002) Revolución en la Ciencia. Gedisa, Barcelona.
- 2. Fara, P. (2009) Breve Historia de la Ciencia. Ariel. Barcelona.
- 3. Gribbin, J. (2009) Historia de la Ciencia 1543-2001. RBA, Barcelona.
- 4. Ihde, A.J. (1984) The Development of Modern Chemistry. Dover Publications, New York.
- 5. Kragh, H. (1989) Introducción a la Historia de la Ciencia. Crítica, Barcelona.
- 6. Kragh, H. (2007) Generaciones Cuánticas. Una Historia de la Física en el Siglo XX. Akal, Madrid.
- 7. Kuhn, T.S. (2001) La Estructura de las Revoluciones Científicas. Fondo de Cultura Económica, Madrid
- 8. Lightman, A. (2006) The Discoveries. Great Breakthroughs in 20th-Century Science, including the

Original Papers. Vintage Books, Random House, New York.

- 9. Mills, I. et al (1999) Magnitudes, Unidades y Símbolos en Química Física. IUPAC, Editorial Ramón Areces, Madrid.
- 10. Martínez del Pozo, A. (2009) El Nacimiento de la Química de Proteínas. Nivola, Madrid.
- 11. Nye, M.J. (1993) From Chemical Philosophy to Theoretical Chemistry. University of California Press, EE.UU.
- 12. Nye, M.J. (1996) Before Big Science. Harvard University Press. EE.UU.
- 13. Rivadulla, A. (2003) Revoluciones en la Física. Trotta, Madrid.
- 14. Sánchez Ron, J.M. (2000) El siglo de la Ciencia. Taurus, Madrid.
- 15. Sánchez Ron, J.M. (2005) Historia de la Física Cuántica. Drakontos, Crítica, Barcelona.
- 16. Shapin, S. (2000) La Revolución Científica. Paidós. Barcelona.
- 17. Valpuesta, J.M. (2008) A la Búsqueda del Secreto de la Vida. Una Breve Historia de la Biología

Molecular. Hélice, Madrid.

18. Capitán Vallvey, L.F. (2014) Un siglo de estudios de química en Granada (1913-2013). Universidad de Granada, Granada.

ENLACES RECOMENDADOS

http://portal.acs.org/portal/acs/corg/content Página de la American Chemical Society, la sociedad científica más grande del mundo, con multitud de enlaces a biografías, química física, etc.

http://uniweb-testing.terragiro.es/fisica quimica/ Página del Departamento de Química Física de la Universidad de Granada.

http://www.chemheritage.org/ Página de la Chemical Heritage Foundation, organización independiente sin ánimo de lucro con intereses en el papel de la química en los desafíos de la sociedad actual, y con enlaces a estudiantes, profesores, química física, etc.

http://allwebhunt.com/dir-wiki.cfm/Chemistry Página con infinidad de enlaces a casi cualquier aspecto de la química, con énfasis en conceptos, leyes, principios,...es decir, fundamentalmente química física.

http://www.thespectroscopynet.com/ Página para interesados en pasado, presente y más de la espectroscopia.

http://www.britannica.com/EBchecked/topic/458647/physical-chemistry Página web de la Enciclopedia Británica dedicada a la Química Física, con multitud de enlaces internos y

http://pubs.acs.org/doi/abs/10.1021/jp961212e Una breve historia de la Química Física en la ACS según el J. Phys. Chem.

http://www.springerlink.com/content/h4101100317p08qk/ Artículo publicado en 1985 por el eminente químico físico especialista en cinética química, Prof. Keith J. Laidler, sobre avances en química física.

http://www.springerlink.com/content/h4101100317p08qk/ Annual Review of Physical Chemistry. Revisiones en un volumen anual en el que suelen incluir colecciones de avances en campos diversos de la Química Física.

https://ptable.com/ Una página donde hay una tabla periódica dinámica con toda la información sobre los elementos, incluyendo tanto propiedades, configuraciones electrónicas y reactividad, como el origen y comentario de cada elemento.

METODOLOGÍA DOCENTE

- MD01 Lección magistral/expositiva.
- MD06 Seminarios.
- MD08 Realización de trabajos en grupo.

EVALUACIÓN (instrumentos de evaluación, criterios de evaluación y porcentaje sobre la calificación final)

EVALUACIÓN ORDINARIA

irma (1): **Universidad de Granada**

Se realizará un examen escrito, final, obligatorio. La calificación total del examen será un 50% de la calificación de la asignatura.

Por otra parte, cada estudiante realizará y entregará un trabajo que voluntariamente podrá presentar en clase, valorándose tanto el contenido del trabajo como, en su caso, la exposición del mismo. Estos trabajos, exposición incluida, corresponderán al 20% de la nota final. En cualquier caso, la temática del trabajo a realizar deberá contar con la aprobación previa del profesor. Asimismo, cada alumno hará un debate debidamente preparado, que supondrá un 10% de la nota final.

Se harán pruebas con preguntas tipo test para repasar la materia después de cada tema, con una valoración de un 10% de la calificación de la materia.

Se tendrá también en cuenta la asistencia, actitud y participación activa en clase, con una valoración que supondrá un 10% de la calificación de la materia.

EVALUACIÓN EXTRAORDINARIA

En la convocatoria extraordinaria el examen, que es escrito, supondrá el 75% de la calificación. La calificación obtenida en el trabajo presentado contará el 25% de la calificación final. Si no se hubiese entregado el trabajo previamente, se podrá entregar hasta la fecha que el profesor indique. Aquellos alumnos que hayan suspendido el trabajo o quieran subir nota en el trabajo, lo pueden hacer en la convocatoria extraordinaria.

EVALUACIÓN ÚNICA FINAL

Examen escrito de toda la materia impartida durante el curso.

INFORMACIÓN ADICIONAL

Las fechas de los exámenes se podrán consultar en la página web de la facultad y del grado.

