Curso 2016- 2017

(Fecha última actualización: 11/06/2016)

MÓDULO	ULO MATERIA		SEMESTRE CRÉDITOS		TIPO	
ELECTRODINÁMICA Y NANOELECTRÓNICA	NANOELECTRÓNICA	4°	2°	6	Optativa	
PROFESOR		DIRECCIÓN COMPLETA DE CONTACTO PARA TUTORÍAS				
ANDRÉS CORS	DV MEDINA	Dpto. Electrónica y Tecnología de Computadores. Facultad de Ciencias. Despacho nº 16. Tfno. 958243227. Correo electrónico: agodoy at ugr.es				
 ANDRÉS GODO 	JY MEDINA	HORARIO DE TUTORÍAS				
		Lunes y martes de 10 a 12h. Jueves de 11 a 13h				
GRADO EN EL QUE SE IMPA	RTE	OTROS GRADOS A LOS QUE SE PODRÍA OFERTAR				
Grado en Física						

PRERREQUISITOS Y/O RECOMENDACIONES (si procede)

Para poder cursar esta asignatura, se recomienda que el alumno haya superado las materias: Electromagnetismo, Física Cuántica, Física Estadística y Física del Estado Sólido.

BREVE DESCRIPCIÓN DE CONTENIDOS (SEGÚN MEMORIA DE VERIFICACIÓN DEL GRADO

Estados electrónicos en nanoestructuras semiconductoras: métodos de masa efectiva y de ligaduras fuertes (Tight Binding). Sistemas electrónicos de dimensionalidad reducida: pozos cuánticos, hilos cuánticos y puntos cuánticos. Transporte de carga en sistemas basados en nanoestructuras. Dispositivos electrónicos relevantes basados en nanoestructuras: Transistores de hilo cuántico, single electron transistor. Memorias semiconductoras. Termoelectricidad.

COMPETENCIAS GENERALES Y ESPECÍFICAS

Competencias Generales:

CT1: Capacidad de análisis y síntesis

CT2: Capacidad de organización y planificación CT5: Capacidad de gestión de la información

CT6: Resolución de problemas

CT8: Razonamiento crítico

CT9: Aprendizaje autónomo

• Competencias Específicas de la Asignatura:

CE1: Conocer y comprender los fenómenos y las teorías físicas más importantes.

CE2: Estimar órdenes de magnitud para interpretar fenómenos diversos.

CE4: Medir, interpretar y diseñar experiencias en el laboratorio o en el entorno.

CE5: Modelar fenómenos complejos, trasladando un problema físico al lenguaje matemático.

CE7: Trasmitir conocimientos de forma clara tanto en ámbitos docentes como no docentes.

CE9: Aplicar los conocimientos matemáticos en el contexto general de la física.

OBJETIVOS (EXPRESADOS COMO RESULTADOS ESPERABLES DE LA ENSEÑANZA)

El alumno adquirirá:

- Capacidad de análisis y síntesis.
- Habilidad para la resolución de problemas.
- Razonamiento crítico.
- Creatividad.
- Iniciativa y espíritu emprendedor.

El alumno sabrá / comprenderá:

- Las bases físicas que rigen la electroestática y el transporte de carga en nanodispositivos electrónicos.
- Las escalas y órdenes de magnitud propios de la nanoelectrónica.
- Las diferencias entre transporte balístico y difusivo.
- Las características de los sistemas electrónicos confinados en una, dos o tres dimensiones.

El alumno será capaz de:

- Comparar datos experimentales con modelos físicos disponibles para revisar su validez y sugerir cambios con objeto de mejorar la concordancia de los modelos con los datos.
- Iniciarse en nuevos campos y materias de la nanoelectrónica a través de su trabajo independiente.
- Realizar las aproximaciones requeridas con objeto de reducir la complejidad del problema hasta un nivel manejable.
- Desarrollar sus propios modelos numéricos para la simulación de nanodispositivos electrónicos.

TEMARIO DETALLADO DE LA ASIGNATURA

TEMARIO TEÓRICO:

Tema 1. The quantum particle

- 1.1 The motivation for nanoelectronics, device scaling
- 1.2 Review of waves, phase and interference, wavefunctions
- 1.3 Wavepackets and operators
- 1.4 Momentum, energy and the uncertainty principle
- 1.5 Schrödinger equation, particle in a box
- 1.6 Piecewise potentials, tunneling
- Tema 2. The Quantum Particle
 - 2.1 Fermi statistics, current, metals and insulators

- 2.2 Density of states, periodic boundary conditions
- 2.3 Density of states in 0-d to 3-d structures
- Tema 3. Two Terminal Quantum Dot Devices
 - 3.1 Equilibrium in two terminal molecular devices
 - 3.2 Capacitance models of electrostatics
 - 3.3 Current flow under bias in two terminal molecular devices
 - 3.4 Charging
- Tema 4. Two Terminal Quantum Wire Devices
 - 4.1 Current flow in quantum wires, the quantum limit of conductance
 - 4.2 Landauer theory
 - 4.3 Ohm's law and the Drude model
- Tema 5. Field Effect Transistors
 - 5.1 Field effect transistors (FETs)
 - 5.2 Ballistic quantum wire FETs
 - 5.3 Ballistic quantum well FETs
 - 5.4 Conventional MOSFETs
- Tema 6. The Electronic Structure of Materials Devices
 - 6.1 Hybrid orbitals, introduction to tight binding
 - 6.2 Examples of tight binding calculations
 - 6.3 Periodic materials, Bloch functions
 - 6.4 Semiconductors and insulators
 - 6.5 Tight binding in periodic materials
 - 6.6 Carbon nanotubes
- Tema 7. Semiconductor memoriesFlash
 - 7.2 Dynamic Random Access Memory (DRAM)
 - 7.3 Static Random Access Memory (SRAM)
- Tema 8. Fundamental Limits in Computation
 - 8.1 CMOS, power delay product and scaling
 - 8.2 Review of CMOS
 - 8.3 Thermodynamic limits and reversible computing

TEMARIO PRÁCTICO:

Seminarios/Talleres

- Numerical methods for self-consistent IV calculations
- MATLAB®

Prácticas de Laboratorio

- Práctica 1: Fourier transforms. Wavepacket propagation.
- Práctica 2: Definition of group velocity and dispersion relation. Fermi statistics.
- Práctica 3: Capacitors. Small signal models of metal-molecule junctions.
- Práctica 4: Tight binding definitions. Hydrogen atom.

BIBLIOGRAFÍA

BIBLIOGRAFÍA FUNDAMENTAL:

- Marc Baldo. "Introduction to Nanoelectronics", http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-701-introduction-to-nanoelectronics-spring-2010/readings/MIT6_701S10_front.pdf
- Electronics from the Bottom Up: A New Approach to Nanoelectronic Devices and Materials

http://nanohub.org/topics/ElectronicsFromTheBottomUp

• V. V. Mitin, .V.A. Kochelap, M.A. Stroscio. "Introduction to Nanoelectronics", Cambridge University Press, 2008.

BIBLIOGRAFÍA COMPLEMENTARIA:

- D. Esseni, P. Palestri, L. Selmi. "Nanoscale MOS Transistors", Cambridge University Press, 2011.
- Supriyo Datta. "Quantum Transport: Atom to Transistor", Cambridge University Press, 2005.
- Supriyo Datta. "Electronic Transport in Mesoscopic Systems", Cambridge University Press, 1995.

ENLACES RECOMENDADOS

http://www.nanohub.org/

METODOLOGÍA DOCENTE

- ACTIVIDAD FORMATIVA: Lección magistral (Clases teóricas-expositivas)
- Descripción: Presentación en el aula de los conceptos fundamentales y desarrollo de los contenidos propuestos.
- Propósito: Transmitir los contenidos de las materias de la asignatura motivando al alumnado a la reflexión, facilitándole el descubrimiento de las relaciones entre diversos conceptos y formarle una mentalidad crítica.
- Contenido en ECTS: 30 horas presenciales (3 ECTS)
- ACTIVIDAD FORMATIVA Actividades prácticas (Laboratorio)
- Descripción: Actividades a través de las cuales se pretende mostrar al alumnado cómo actuar a partir de la aplicación de los conocimientos adquiridos.
- Propósito: Desarrollo en el alumnado de las habilidades instrumentales de la materia.
- Contenido en ECTS: 14 horas presenciales (1,4 ECTS).
- ACTIVIDAD FORMATIVA: Seminarios y problemas
- Descripción: Modalidad organizativa de los procesos de enseñanza y aprendizaje donde tratar en profundidad una temática relacionada con la materia. Incorpora actividades basadas en la indagación, el debate, la reflexión y el intercambio.
- Propósito: Desarrollo en el alumnado de las competencias cognitivas y procedimentales de la materia.
- Contenido en ECTS: 14 horas presenciales (1,4 ECTS).
- ACTIVIDAD FORMATIVA: Actividades no presenciales Actividades no presenciales individuales (Estudio y trabajo autónomo)
- Descripción: 1) Actividades (guiadas y no guiadas) propuestas por el profesor a través de las cuales y de forma individual se profundiza en aspectos concretos de la materia posibilitando al estudiante avanzar en la adquisición de determinados conocimientos y procedimientos de la materia, 2) Estudio individualizado de los contenidos de la materia 3) Actividades evaluativas (informes, exámenes, ...)
- Propósito: Favorecer en el estudiante la capacidad para autorregular su aprendizaje, planificándolo, diseñándolo, evaluándolo y adecuándolo a sus especiales condiciones e intereses. Actividades no presenciales grupales (Estudio y trabajo en grupo)
- Descripción: 1) Actividades (guiadas y no guiadas) propuestas por el profesor a través de las cuáles y de forma grupal se profundiza en aspectos concretos de la materia posibilitando a los estudiantes avanzar en la adquisición de determinados conocimientos y procedimientos de la materia.

- Propósito: Favorecer en los estudiantes la generación e intercambio de ideas, la identificación y análisis de diferentes puntos de vista sobre una temática, la generalización o transferencia de conocimiento y la valoración crítica del mismo.
- Contenido en ECTS: 90 horas no presenciales (3,6 ECTS)
- ACTIVIDAD FORMATIVA: Tutorías académicas
- Descripción: manera de organizar los procesos de enseñanza y aprendizaje que se basa en la interacción directa entre el estudiante y el profesor.
- Propósito: 1) Orientan el trabajo autónomo y grupal del alumnado, 2) profundizar en distintos aspectos de la materia y 3) orientar la formación académica-integral del estudiante.
- Contenido en ECTS: 7,5 horas presenciales, grupales e individuales (0,3 ECTS)
- ACTIVIDAD EVALUADORA: Examen
- Descripción: Prueba escrita en la que el estudiante debe resolver las cuestiones planteadas.
- Propósito: Evaluar el grado de asimilación de los conceptos y metodologías explicadas.
- Contenido en ECTS: 2,5 horas presenciales, grupales e individuales (0,1 ECTS)
- METODOLOGÍA DE ENSEÑANZA Y APRENDIZAJE
- Las actividades formativas propuestas se desarrollarán desde una metodología participativa y aplicada que se centra en el trabajo del estudiante (presencial y no presencial/individual y grupal). Las clases teóricas, los seminarios, las clases prácticas, las tutorías, el estudio y trabajo autónomo y el grupal son las maneras de organizar los procesos de enseñanza y aprendizaje de esta materia.

PROGRAMA DE ACTIVIDADES

		Actividades presenciales					Actividades no presenciales				
Segundo cuatrimestre Tema	Temario	Sesiones teóricas (horas)	Sesiones prácticas (horas)	Seminarios y Problemas (horas)	Exámenes (horas)	Etc.	Tutorías individuales (horas)	Tutorías colectivas (horas)	Estudio y trabajo individual del alumno (horas)	Trabajo en grupo (horas)	Etc.
Semana 1	T1	2	1	1			4		6		
Semana 2	T1	2	1	1			4		5	1	
Semana 3	T2	2	1	1			4		5	1	
Semana 4	T2	2	1	1			4		6		
Semana 5	T3 / P1	2	1	1			3	1	5	1	
Semana 6	T3 / P2	2	1	1			4		5	1	
Semana 7	T3 / P3	2	1	1			4		6		
Semana 8	T4	2	1	1			4		5	1	

Semana 9	T4	2	1	1	1	4		5	1	
Semana 10	T4 / P4	2	1	1		3	1	6		
Semana 11	T4	2	1	1		4		5	1	
Semana 12	T5 / P5	2	1	1		4		5	1	
Semana 13	T6 / P6	2	1	1		4		6		
Semana 14	T6 / P6	2	1	1		4		5	1	
Semana 15	T6	2			2	2	2	5	1	
Total horas		30	14	14	2	56	4	80	10	

EVALUACIÓN (INSTRUMENTOS DE EVALUACIÓN, CRITERIOS DE EVALUACIÓN Y PORCENTAJE SOBRE LA CALIFICACIÓN FINAL, ETC.)

- Con objeto de evaluar la adquisición de los contenidos y competencias a desarrollar en la materia, se utilizará un sistema de evaluación diversificado, seleccionando las técnicas de evaluación más adecuadas en cada momento, que permita poner de manifiesto los diferentes conocimientos y capacidades adquiridos por el alumnado al cursar la asignatura. De entre las siguientes técnicas evaluativas se utilizarán las siguientes:
 - Para la parte teórica se realizarán exámenes finales o parciales, sesiones de evaluación y entregas de ejercicios sobre el desarrollo y los resultados de las actividades propuestas. La ponderación de este bloque será del 65 %.
 - Para la parte práctica se realizarán prácticas de laboratorio, resolución de problemas y desarrollo de proyectos (individuales o en grupo), y se valorarán las entregas de los informes/memorias realizados por los alumnos, o en su caso las entrevistas personales con los alumnos y las sesiones de evaluación. La ponderación de este bloque será del 25 %.
 - En su caso, la parte de trabajo autónomo y los seminarios se evaluarán teniendo en cuenta la asistencia a los seminarios, los problemas propuestos que hayan sido resueltos y entregados por los alumnos, en su caso, las entrevistas efectuadas durante el curso y la presentación oral de los trabajos desarrollados. La ponderación de estos será del 10 %.
- La calificación global corresponderá a la puntuación ponderada de los diferentes aspectos y
 actividades que integran el sistema de evaluación. Así, el resultado de la evaluación será una
 calificación numérica obtenida mediante la suma ponderada de las calificaciones
 correspondientes a una parte teórica, una parte práctica y, en su caso, una parte relacionada
 con el trabajo autónomo de los alumnos, los seminarios impartidos y el aprendizaje basado
 en proyectos.
- Para los alumnos que, de acuerdo con la Normativa de Evaluación y calificación de los Estudiantes de la Universidad de Granada opten por la evaluación única final, el examen final único incluirá una parte práctica y otra escrita. La parte práctica consistirá en la realización

de una práctica, excepto para quienes hayan realizado y superado las prácticas de laboratorio durante el curso. Para aprobar la asignatura, se deberá obtener una puntuación de 5 sobre 10 en cada parte.

