GUIA DOCENTE DE LA ASIGNATURA FÍSICA CUÁNTICA

MÓDULO	MATERIA	CURSO	SEMESTRE	CRÉDITOS	TIPO				
Fundamentos Cuánticos	Física Cuántica	3º	1º, 2º	12	Obligatoria				
PROFESOR(ES)		DIRECCIÓN COMPLETA DE CONTACTO PARA TUTORÍAS (Dirección postal, teléfono, correo electrónico, etc.)							
Primer Cuatrime • Carmen Gar		Dpto. Física Atómica, Molecular y Nuclear, 3º planta de Físicas, Facultad de Ciencias. Despachos nº 133, 131, y 126 Tfnos: 9582-43212, 46171 y 40453. galvez@ugr.es, g_recio@ugr.es y omiste@ugr.es							
Juan José On	niste Romero: "Problem	HORARIO DE TUTORÍAS:							
		L,M,J: de 11 a 13 horas (Prof Gálvez) M,X,J: de 12 a 14 horas (Prof Garcia Recio) X: de 11 a 13, J: de 11 a 12 (Prof. Omiste)							
GRADO EN EL QUE	SE IMPARTE	OTROS GRADOS A LOS QUE SE PODRÍA OFERTAR							
Grado en Física		Grado en Química, Grado en Matemáticas							
PRERREQUISITOS Y/O RECOMENDACIONES (si procede)									
Recomendable haber superado los módulos de: Fundamentos de Física, Métodos Matemáticos, Algebra Lineal y Geometría, Análisis Matemático y Mecánica y Ondas y conveniente haber superado la asignatura Métodos Numéricos y Simulación									
BREVE DESCRIPCIÓN DE CONTENIDOS (SEGÚN MEMORIA DE VERIFICACIÓN DEL GRADO)									
Orígenes de la Física Cuántica. La función de onda y la interpretación de Copenhague.									

La ecuación de Schrödinger y la ecuación de Schrödinger independiente del tiempo.

Estudio de problemas en una dimensión.

Momento angular. Problemas tridimensionales con potenciales centrales.

Métodos aproximados para estados estacionarios.

Técnicas experimentales de Física Cuántica.

COMPETENCIAS GENERALES Y ESPECÍFICAS

Transversales:

- CT1 Capacidad de análisis y síntesis.
- CT2 Capacidad de organización y planificación.
- CT3 Comunicación oral y/o escrita.
- CT5 Capacidad de gestión de la información
- CT6 Resolución de problemas.
- CT7 Trabajo en equipo.
- CT8 Razonamiento crítico.
- CT9 Aprendizaje autónomo.

Específicas:

- CE1: Conocer y comprender los fenómenos y las teorías físicas más importantes.
- CE2: Estimar órdenes de magnitud para interpretar fenómenos diversos.
- CE4: Medir, interpretar y diseñar experiencias en el laboratorio o en el entorno
- CE5: Modelar fenómenos complejos, trasladando un problema físico al lenguaje matemático.
- CE7: Trasmitir conocimientos de forma clara tanto en ámbitos docentes como no docentes.
- CE9: Aplicar los conocimientos matemáticos en el contexto general de la física.

• OBJETIVOS (EXPRESADOS COMO RESULTADOS ESPERABLES DE LA ENSEÑANZA)

.El alumno sabrá/ comprenderá:

- En profundidad las bases de la física moderna, en lo concerniente a teoría cuántica.
- Las teorías físicas más importantes, focalizando en su estructura
- lógica y matemática, su soporte experimental y el fenómeno físico que
- puede ser descrito a través de ellos. (Comprensión teórica de
- fenómenos físicos).
- · Los escalas y órdenes de magnitud de los fenómenos físicos
- · Las situaciones que son físicamente diferentes, pero que muestran
- analogías, por lo tanto permitiendo el uso de soluciones conocidas a
- nuevos problemas. (Destrezas para la resolución de problemas)
- Comprender y dominar el uso de los métodos matemáticos y numéricos más
- comúnmente utilizados. (Destrezas en resolución de problemas y destrezas matemáticas).

El alumno será capaz de:

- Comparar nuevos datos experimentales con modelos disponibles para revisar
- su validez y sugerir cambios con el objeto de mejorar la concordancia de los modelos con

los

- datos. (Destrezas de modelación).
- · Iniciarse en nuevos campos a través de estudios independientes
- (Capacidad de aprender a aprender).
- Realizar lo esencial de un proceso / situación y establecer un modelo de
- trabajo del mismo; el graduado debería ser capaz de realizarlas
- aproximaciones requeridas con el objeto de reducir el problema hasta
- un nivel manejable; pensamiento crítico para construir modelos físicos.
- (Destrezas de modelado y de resolución de problemas).
- Adquirir un bagaje de la disciplina que permita modelar y entender las
- características esenciales de la dinámica de sistemas microscópicos.

TEMARIO DETALLADO DE LA ASIGNATURA

TEMARIO TEÓRICO:

I.- ORÍGENES DE LA FÍSICA CUÁNTICA.

- Tema 1. Radiación y Materia: Estado de la Física a finales del siglo XIX. Radiación del cuerpo
 - negro: Teoría clásica y Postulado de Planck.
- Tema 2. Carácter corpuscular de la radiación. Efecto fotoeléctrico. Difusión Compton. Producción de rayos X.
- Tema 3. Modelos atómicos primitivos. Modelo de Rutherford. Modelo de Bohr. Experimento de Franck-Hertz. Reglas de cuantificación. Efecto Zeeman
- Tema 4. Dualidad onda-corpúsculo. Postulado de de Broglie. Confirmación experimental.

II.- TEORÍA DE SCHRÖDINGER DE LA MECÁNICA CUÁNTICA.

- Tema 5. Función de onda. Interpretación probabilística. Paquetes de ondas. Principio de indeterminación.
- Tema 6. La ecuación de Schrödinger dependiente del tiempo. Interpretación de la función de onda. Valores esperados. Espacios de posiciones y momentos.
- Tema 7. La ecuación de Schródinger independiente del tiempo. Estados estacionarios. Cuantificación de la energía. Evolución temporal de los estados.

III.- PROBLEMAS UNIDIMENSIONALES.

- Tema 8. Procesos de difusión: potencial escalón, barrera de potencial. Coeficientes de transmisión y reflexión. Efecto túnel.
- Tema 9. Estados ligados: pozo cuadrado, pozo de oscilador armónico. Potenciales tipo delta. Potenciales periódicos.

IV.- MOMENTO ANGULAR.

- Tema 10. Momento angular orbital y rotaciones espaciales. Armónicos esféricos.
- Tema 11. Teoría general de momento angular. Representación matricial de operadores de momento angular. Autovalores y auto vectores.
- Tema 12. El spin del electrón. Experimento de Stern-Gerlach.
- Tema 13. Composición de momentos angulares. Coeficientes de Clebsch-Gordan. Momento angular total.
- V.- PROBLEMAS TRIDIMENSIONALES.

- Tema 14. Potenciales separables en coordenadas cartesianas: partícula libre, pozos cuadrados tridimensionales. Oscilador armónico isótropo.
- Tema 15. Sistemas de dos partículas con interacción central. Separación de coordenadas. Ecuación radial y degeneración. La partícula libre. Pozos cuadrados. Oscilador armónico isótropo.
- Tema 16. El átomo hidrogenoide. Espectro de energías. Notación espectroscópica. Interacción espin-órbita.
- Tema 17. Teoría de perturbaciones. Aplicaciones. Método variacional. Átomo de Helio.

TEMARIO PRÁCTICO:

Seminarios/Talleres

• Resolución de problemas asociados a cada uno de los temas, bien en grupos reducidos, bien en grupos más extensos, dependiendo de las características de los problemas.

.

PRÁCTICAS DE LABORATORIO

Radiación y Materia:

Práctica 1. Relación carga/masa del electrón

Práctica 2. Radiación del cuerpo negro.

Dualidad onda-corpúsculo:

Práctica 3. Efecto Fotoeléctrico

Práctica 4. Difracción de electrones y de Rayos X

Cuantización de la energía

Práctica 5. Espectros atómicos

Práctica 6. Experiencia de Franck-Hertz

BIBLIOGRAFÍA

BIBLIOGRAFÍA FUNDAMENTAL:

Teoría

- 1. B.H. Bransden and C.J. Joachain, "Quantum Mechanics" (Editorial Prentice-Hall)
- 2. S. Gasyorowicz, "Quantum Physics" (Editorial Wiley)
- 3. R. W. Robinett, "Quantum Mechanics", Oxford, 2006
- 4. A. I. M. Rae, "Quantum Mechanics", Taylor & Francis, 2008
- 5. C. Sánchez del Río (coordinador), "Física Cuántica" (Editorial Pirámide)

Problemas

- 6. · A.Z. Capri, "Problems and Solutions in Quantum Mechanics" (Editorial World Scientific)
- 7. F. Constantinescu & E. Magyari, "Problems in Quantum Mechanics", (Editorial Pergamon)
- 8. · A. Galindo & P. Pascual, "Problemas de Mecánica Cuántica" (Editorial Eudema-Pirámide)
- 9. Y.K. Lim, "Problems and Solutions in Quantum Mechanics" (Editorial World Scientific)

BIBLIOGRAFÍA COMPLEMENTARIA:

- 1. D. Bohm, "Quantum Theory", Editorial Dover.
- 2. S- Brandt y H. D. Dahmen, H.D., "The picture book of quantum mechanics",
- 3. Wiley, 1985.
- 4. P. A. M. Dirac, "Principios de Mecánica Cuántica", Editorail Ariel.
- 5. R. Eisberg y R. Resnick, "Física Cuántica", Editorial Limusa.
- 6. R. Fernández Álvarez-Estrada y J. L Sánchez-Gómez, "100 problemas de Física Cuántica", Alianza Editorial.
- 7. 6. R.P. Feynman, R.B. Leighton y M. Sands, 'The Feynman Lectures on
- 8. Physics', vol. 3, 'Mecánica Cuántica', edición bilingüe: inglés-español.
- 9. Ed. Fondo Educativo Interamericano.
- 10. S. Flugge, "Practical Quantum Mechanics", Editorial Springer.
- 11. A. Galindo y P. Pascual, "Mecánica Cuántica", Editorial Eudema.
- 12. C. S. Johnson y L. G. Pedersen, "Problems and solutions in Quantum
- 13. Chemistry and Physics", Editorial Dover.
- 14. L. D. Landau y E. M. Lifshitz, "Mecánica Cuántica (Teoría no-relativista)", Editorial Reverté.
- 15. H. J. Lipkin, "Quantum Mechanics", Editorial North-Holland.
- 16. A. Messiah, "Mecánica Cuántica", Editorial Tecnos.
- 17. F. Mandl, "Quantum Mechanics", Editorial Wiley.
- 18. J. Sánchez Guillén y M. A. Braun, "Física Cuántica", Editorial Alianza Univ..
- 19. L. I. Schiff, "Quantum Mechanics", Editorial McGraw.
- 20. G. L. Squires, "Problems in Quantum Mechanics with solutions", Cambridge.
- 21. B. Thaller, "Visual Quantum Mechanics", Springer, 2000
- 22. Ta-You Wu, "Quantum Mechanics", World Scientific.
- 23. F. J. Yndurain, "Mecánica Cuántica", Editorail Alianza.

ENLACES RECOMENDADOS

Física en la UGR, Comisión Docente de Física: http://physica.ugr.es/
Real Sociedad Española de Física: http://www.rsef.org/

METODOLOGÍA DOCENTE

Clases de teoría:

- Sesiones para todo el grupo de alumnos en las que el profesor explicará los contenidosteóricos fundamentales de cada tema y su importancia en el contexto de la materia (CT1, CT6, CT8, CE1,
- CE2, CE9).

Clases de problemas: Sesiones para todo el grupo de alumnos en las que el profesor resolverá ejercicios

• y problemas sobre los contenidos teóricos trabajados en cada tema (CT1, CT6, CT8, CE1, CE2, CE9).

Seminarios y/o exposición de trabajos, que pueden incluir

- Sesiones para todo el grupo de alumnos, en las que éstos, bajo la supervisión del profesor,
- expongan la resolución trabajos y ejercicios, de forma oral o escrita, previamente propuestos
- (CT1, CT3, CT6, CT8, CT10, CE9, CE5).
- Seminarios donde discutirán aspectos específicos del temario que tengan especial relevancia o
- interés para los alumnos.
- Tutorías especializadas donde los alumnos en grupo reducidos o individualmente expondrán al
- profesor dudas y cuestiones sobre lo trabajado en las clases teóricas y prácticas. (CT3, CT8, CE9).

Laboratorio: Las sesiones prácticas de Laboratorio realizando experimentos en grupos reducidos,

- supervisados por el profesor, capacitarán al alumno para:
- Comprender las bases experimentales de la Física Cuántica.
- Conocer los principios, técnicas e instrumentos de medida y los fenómenos de interés en Física
- Cuántica
- Y para contribuir a que adquieran las competencias las competencias transversales CT1,
- CT2,CT3,CT6,CT7,CT8 Y CT9 y las específicas CE1, CE2, CE9, CE4 y CE7

PROGRAMA DE ACTIVIDADES											
		Actividades presenciales (NOTA: Modificar según la metodología docente propuesta para la asignatura)				Actividades no presenciales (NOTA: Modificar según la metodología docente propuesta para la asignatura)					
	Sesio nes teóric as (hora s)	Práctic as (Probl) (horas	Práctic as (Labora torio) (horas)	Exposicion es y seminario s (horas)	Exámen es (horas)	Etc.	Tutorías individu ales (horas)	Tutorías colectiva s (horas)	Estudio y trabajo individu al del alumno (horas)	Trabajo en grupo (horas)	Etc.
Semanas 1-7	3	1									
Semana 8	3	1	2								
Semana 9	3	1	2								

Semana 10	3	1	2					
Semana 11	3	1	2					
Semana 12	3	1	2					
Semana 13	3	1	2					
Semana 14	3	1	2					
Semana 15 	3	1		1				
Semana 16-20	3							
Semana 21-29	2	1						
Semana 30	2			1				
Total horas	80	24	14	2				

EVALUACIÓN (INSTRUMENTOS DE EVALUACIÓN, CRITERIOS DE EVALUACIÓN Y PORCENTAJE SOBRE LA CALIFICACIÓN FINAL, ETC.)

- La evaluación se realizará a partir de los exámenes en los que los estudiantes tendrán que demostrar las competencias adquiridas y de la resolución de problemas y ejercicios propuestos, la habilidad mostrada en el taller de problemas, las preguntas de clase, la participación activa en debates y seminarios, la iniciativa y calidad del trabajo dirigido desarrollado, de las exposiciones de los trabajos de teoría y problemas. Y del trabajo realizado en el laboratorio incluyendo la participación y desarrollo de las prácticas en el laboratorio, la memoria escrita y examen específico relativo a dichas prácticas
- La superación de cualquiera de las pruebas no se logrará sin un conocimiento uniforme y equilibrado de toda la materia.

INFORMACIÓN ADICIONAL

Cumplimentar con el texto correspondiente en cada caso.

