Curso 2017-2018

(Fecha última actualización: 14/06/2017) (Fecha de aprobación en Consejo de Departamento: 29/06/2017)

MÓDULO	MATERIA	CURSO	SEMESTRE	CRÉDITOS	TIPO
Complementos obligatorios	Ingeniería de estructuras	3º	2º	6	Obligatoria
PROFESORES ⁽¹⁾			DIRECCIÓN COMPLETA DE CONTACTO PARA TUTORÍAS (Dirección postal, teléfono, correo electrónico, etc.)		
 M. Esther Puertas García (coord.) Alejandro E. Martínez Castro. 			Dpto. Mecánica de Estructuras e Ingneniería Hidráulica, 4ª planta, ETSI de Caminos, Canales y Puertos. Despachos nª 4 y 12. Correo electrónico: epuertas@ugr.es y amcastro@ugr.es		
			HORARIO DE TUTORÍAS Y/O ENLACE A LA PÁGIN WEB DONDE PUEDAN CONSULTARSE LOS HORARIOS DE TUTORÍAS ⁽¹⁾		
			(consultar página http://meih.ugr.es)		
GRADO EN EL QUE SE IMPARTE			OTROS GRADOS A LOS QUE SE PODRÍA OFERTA		
Grado en Ingeniería	ı Civil				
PRERREQUISITOS	Y/O RECOMENDACIONES	(si procede)	•		
	asignaturas Mecánica para os de las asignaturas Física				nentos de

BREVE DESCRIPCIÓN DE CONTENIDOS (SEGÚN MEMORIA DE VERIFICACIÓN DEL GRADO)

Cálculo matricial de estructuras. Inestabilidad. Cálculo plástico. Elementos Finitos.

COMPETENCIAS GENERALES Y ESPECÍFICAS

Informática e Ingeniería Gráfica I

Competencias Básicas y Generales

¹ Consulte posible actualización en Acceso Identificado > Aplicaciones > Ordenación Docente
(∞) Esta guía docente debe ser cumplimentada siguiendo la "Normativa de Evaluación y de Calificación de los estudiantes de la Universidad de Granada" (http://secretariageneral.ugr.es/pages/normativa/fichasugr/ncg7121/!)

INFORMACIÓN SOBRE TITULACIONES DE LA UGR grados.ugr.es

Firmado por: DAVID LOPEZ MARTIN Secretario/a de Departamento

Sello de tiempo: 04/07/2017 19:22:52 Página: 1 / 7

W37g/9235tlRyselxu/E735CKCJ3NmbA

La integridad de este documento se puede verificar en la dirección https://sede.ugr.es/verifirma/pfinicio.jsp introduciendo el código de verificación que aparece debajo del código de barras.

- CG02: Comprensión de los múltiples condicionamientos de carácter técnico y legal que se plantean en la construcción de una
 obra pública, y capacidad para emplear métodos contrastados y tecnologías acreditadas, con la finalidad de conseguir la
 mayor eficacia en la construcción dentro del respeto por el medio ambiente y la protección de la seguridad y salud de los
 trabajadores y usuarios de la obra pública.
- CG01: Capacitación científico-técnica para el ejercicio de la profesión de Ingeniero Técnico de Obras Públicas y conocimiento de las funciones de asesoría, análisis, diseño, cálculo, proyecto, construcción, mantenimiento, conservación y explotación
- CB2: Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las
 competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas
 dentro de su área de estudio
- CB3: Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética
- CB5: Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía

Competencias Específicas

- CFB1: Capacidad para la resolución de los problemas matemáticos que puedan plantearse en la ingeniería. Aptitud para
 aplicar los conocimientos sobre: álgebra lineal; geometría; geometría diferencial; cálculo diferencial e integral; ecuaciones
 diferenciales y en derivadas parciales; métodos numéricos; algorítmica numérica; estadística y optimización.
- CFB3: Conocimientos básicos sobre el uso y programación de los ordenadores, sistemas operativos, bases de datos y
 programas informáticos con aplicación en ingeniería.
- CFB4: Comprensión y dominio de los conceptos básicos sobre las leyes generales de la mecánica, termodinámica, campos y
 ondas y electromagnetismo y su aplicación para la resolución de problemas propios de la ingeniería.
- COP3: Capacidad para aplicar los conocimientos de materiales de construcción en sistemas estructurales. Conocimiento de la relación entre la estructura de los materiales y las propiedades mecánicas que de ella se derivan.
- COP4: Capacidad para analizar y comprender cómo las características de las estructuras influyen en su comportamiento. Capacidad para aplicar los conocimientos sobre el funcionamiento resistente de las estructuras para dimensionarlas siguiendo las normativas existentes y utilizando métodos de cálculo analíticos y numéricos.
- CCC3: Conocimiento sobre el proyecto, cálculo, construcción y mantenimiento de las obras de edificación en cuanto a la estructura, los acabados, las instalaciones y los equipos propios.

OBJETIVOS (EXPRESADOS COMO RESULTADOS ESPERABLES DE LA ENSEÑANZA)

El alumnado debe aprender a:

- elegir el modelo estructural de cálculo adecuado según la tipología estructural
- calcular matrices de rigidez elementales bajo diversas condiciones de unión y planos de carga, en distintos sistemas de coordenadas
- calcular matrices de rigidez globales a partir de las elementales, teniendo en cuenta diferentes condiciones de apoyo y unión en nudos
- obtener cargas en nudos equivalentes para diferentes hipótesis de cargas en barras y acciones asimilables
- Resolver estructuras completas mediante el Método Directo de la Rigidez, calculando tanto desplazamientos en nudos, como fuerzas en barras y a partir de ellos, diagramas de esfuerzos.
- Evaluar elementos aislados a compresión mediante teoría de 2º orden aplicando la Tª de Euler, así como evaluar el efecto de excentricidades, imperfecciones, grandes desplazamientos y plasticidad
- Calcular matrices elementales de segundo orden, tanto exactas como utilizando la matriz geométrica
- Calcular la carga global de pandeo de una estructura.
- Modelizar estructuras de elementos lineales mediante elementos finitos.
- Modelizar estructuras tipo sólido mediante elementos finitos.

INFORMACIÓN SOBRE TITULACIONES DE LA UGR grados.ugr.es

Firmado por: DAVID LOPEZ MARTIN Secretario/a de Departamento

Sello de tiempo: 04/07/2017 19:22:52 Página: 2 / 7

W37g/9235tlRyselxu/E735CKCJ3NmbA

La integridad de este documento se puede verificar en la dirección https://sede.ugr.es/verifirma/pfinicio.jsp introduciendo el código de barras.

TEMARIO DETALLADO DE LA ASIGNATURA

TEMARIO TEÓRICO:

BLOQUE I: CÁLCULO MATRICIAL DE ESTRUCTURAS

- Tema I.1. Conceptos básicos.
 - 1. Introducción.
 - 2. Métodos matriciales. Relaciones básicas.
 - 3. Discretización. Elementos y nudos.
 - 4. Métodos de Compatibilidad y Equilibrio.
 - 5. Conceptos de matriz de rigidez y matriz de flexibilidad.
- Tema I.2. Coordenadas y matrices elementales.
 - 1. Sistemas de coordenadas.
 - 2. Obtención de las matrices de rigidez elementales.
 - 3. Elementos articulado.
 - 4. Elementos viga.
 - 5. Elementos viga con deformación a cortante.
 - 6. Elementos emparrillado.
 - 7. Elemento viga tridimensional.
 - 8. Transformación de coordenadas.
- Tema I.3. El Método Directo de la Rigidez (MDR).
 - 1. El elemento y la estructura.
 - 2. Formación de la matriz de rigidez.
 - 3. Propiedades de la matriz de rigidez.
 - 4. Aplicación de las condiciones de contorno.
 - 5. Postproceso: determinación de esfuerzos y reacciones.
- Tema I.4. Problemas particulares de carga y apoyo.
 - 1. Introducción.
 - 2. Cargas aplicadas en barras.
 - 3. Asientos en apoyos.
 - 4. Efectos térmicos y defectos de montaje.
 - 5. Apoyos no concordantes y apoyos elásticos.
- Tema I.5. Técnicas complementarias de análisis.
 - 1. Introducción.
 - 2. Condensación de grados de libertad.
 - 3. Libertades en barras.
 - 4. Subestructuras o macroeelementos.
 - 5. Ligaduras de movimientos.
 - 6. Nudos flexibles.

BLOQUE II: INESTABILIDAD DE ESTRUCTURAS

- Tema II.0. Introducción a las Ecuaciones Diferenciales Ordinarias.
- Tema II.1. Inestabilidad de barras comprimidas.
 - 1. Motivación.
 - 2. Ejemplos sencillos de comportamiento no lineal.
 - 3. Pandeo de una columna aislada articulada.
 - 4. Pandeo de columnas: influencia de las condiciones de contorno.
 - 5. Ecuación Diferencial de Pandeo de Columnas.
 - 6. Longitud de pandeo. Hipérbola de Euler.
 - 7. Pandeo con imperfecciones.

INFORMACIÓN SOBRE TITULACIONES DE LA UGR grados.ugr.es

Firmado por: DAVID LOPEZ MARTIN Secretario/a de Departamento

Sello de tiempo: 04/07/2017 19:22:52 Página: 3 / 7

W37g/9235tlRyselxu/E735CKCJ3NmbA

- Tema II.2. Inestabilidad global de estructuras.
 - 1. Introducción.
 - 2. Modos de pandeo global.
 - 3. El elemento viga-columna.
 - 4. Análisis no lineal de estructuras en segundo orden: efecto P-Delta.
 - 5. Pandeo global de estructuras.

BLOQUE III: ANÁLISIS DE ESTRUCTURAS MEDIANTE EL MÉTODO DE LOS ELEMENTOS FINITOS

- Tema III.1. El Método de los Elementos Finitos: elementos barra.
 - 1. Introducción.
 - 2. MEF para barras a axil.
 - 3. Integración numérica.
 - 4. MEF para vigas delgadas.
 - 5. MEF para vigas gruesas.
- Tema III.2. El Método de los Elementos Finitos: elasticidad lineal.
 - 1. Introducción.
 - 2. MEF para elasticidad bidimensional.
 - 3. Elementos lineales.
 - 4. Tecnología de elementos.
 - 5. Aspectos complementarios.

TEMARIO PRÁCTICO:

Prácticas de SAP2000

- Estructuras Articuladas Planas.
- · Pórticos planos.
- Inestabilidad y no linealidad geométrica.
- Elementos finitos para elasticidad.

BIBLIOGRAFÍA

BIBLIOGRAFÍA FUNDAMENTAL:

- Puertas García, M.E.; Martínez Castro, A.E.; Gallego Sevilla, R. *Análisis de Estructuras: Cálculo Matricial. Con Aplicaciones en Python*. Licencia Creative Commons Atribución-NoComercial-CompartirIgual.
- Puertas García, M.E.; Martínez Castro, A.E.; Gallego Sevilla, R. *Problemas resueltos de Cálculo Matricial. Con Soluciones en Python*. Licencia Creative Commons Atribución-NoComercial-CompartirIgual.
- Martínez Castro, A.E.; Puertas García, M.E.; Gallego Sevilla, R. Inestabilidad de Estructuras. Universidad de Granada. Departamento de Mecánica de Estructuras e Ingeniería Hidráulica. 2015. URI: http://hdl.handle.net/10481/36616
- Martínez Castro, A.E.; Puertas García, M.E.; Gallego Sevilla, R. *Problemas resueltos de Inestabilidad de Estructuras. Con Soluciones en Python*. Licencia Creative Commons Atribución-NoComercial-CompartirIgual.
- Martínez Castro, A.E.; Puertas García, M.E.; Gallego Sevilla, R. El Método de los Elementos Finitos en Análisis Estructural. Con Aplicaciones en Python. Licencia Creative Commons Atribución-NoComercial-Compartir Igual.
- Martínez Castro, A.E.; Puertas García, M.E.; Gallego Sevilla, R. Problemas resueltos de El Método de los Elementos Finitos. Con Soluciones en Python. Licencia Creative Commons Atribución-NoComercial-CompartirIgual.
- Martínez Castro, A.E.; Puertas García, M.E.; Gallego Sevilla, R. Cuadernos interactivos del Método de los Elementos Finitos. Licencia Creative Commons Atribución-NoComercial-CompartirIgual. URI:

INFORMACIÓN SOBRE TITULACIONES DE LA UGR grados.ugr.es

Firmado por: DAVID LOPEZ MARTIN Secretario/a de Departamento

Sello de tiempo: 04/07/2017 19:22:52 Página: 4 / 7

W37g/9235tlRyselxu/E735CKCJ3NmbA

https://github.com/alexmacastro/AE_FEM

BIBLIOGRAFÍA COMPLEMENTARIA:

- Samartín Quiroga, A. y Gónzalez de Cangas, J.R., Cálculo Matricial de estructuras, Colegio ICCP, 2001.
- Celigüeta, J.T., Curso de Análisis Estructural, Eunsa, 2008
- Martí Montrull, P., Análisis de estructuras: métodos clásicos y matriciales, HE Editores, 2003
- Monleón Cremadas, S., Análisis de vigas, arcos, placas y láminas, UPV, 1999.
- Oñate, E., Análisis de Estructuras mediante el Método de los Elementos Finitos, UPC.
- Z. Bažant and L. Cedolin. Stability of Structures. Elastic, Inelastic, Fracture and Damage Theories. World Scientific, 2010.
- J. Domínguez. Elementos para el Cálculo de Estructuras Metálicas. Servicio de publicaciones. ETSII Las Palmas de Gran Canaria, 1982.
- T. V. Galambos and A. E. Surovek. Structural Stability of Steel: Concepts and Applications for Structural Engineers. John Wiley and Sons, 2008.
- S. P. Timoshenko and J. M. Gere. Theory of Elastic Stability. Dover Publications, 2009.

ENLACES RECOMENDADOS

Plataforma PRADO de la asignatura

METODOLOGÍA DOCENTE

Actividades formativas presenciales

- Clases teóricas: El profesorado desarrollará los contenidos descritos en el programa de la asignatura que previamente se habrán facilitado al alumno. Durante el desarrollo de las clases los profesores podrán responder todas las dudas planteadas por los estudiantes e invitarán a la participación de los mismos proponiendo breves cuestiones así como desarrollarán ejercicios sobre los contenidos para permitir fijar los conceptos.
- El objeto de éstas es adquirir los conocimientos de la materia, potenciar la reflexión y una mentalidad crítica.
- Clases prácticas en el aula: Se resolverán ejercicios de aplicación de los conceptos teóricos empleando técnicas docentes que permitan al alumno afianzar los contenidos teóricos.
- El objetivo de estas actividades es que el alumno desarrolle las habilidades necesarias para la resolución de problemas estructurales.
- Clases prácticas en el aula informática: Se realizarán actividades que permitan al alumnado aplicar los conocimientos adquiridos en clases teóricas y prácticas para la resolución de problemas estructurales complejos empleando software específico (Python, SAP 2000)
- Las competencias adquiridas con el desarrollo de las clases prácticas informáticas consisten en potenciar las habilidades de manejo de software en cálculo estructural adaptándose a la actualidad.
- Evaluación individual. Se realizará una prueba final para comprobar los conocimientos adquiridos en el desarrollo de la asignatura.

Actividades formativas no presenciales

- Estudio y trabajo individual: El alumnado desarrollará actividades (guiadas y no guiadas) propuestas por el profesorado que le permitan de forma individual profundizar y avanzar en el estudio de la materia.
- El objetivo es que el alumnado planifique y autoevalúe su aprendizaje.
- Tutorías individuales o en grupo: Seguimiento personalizado del aprendizaje del alumno. El objeto es orientar el trabajo del alumnado y orientar la formación académica del estudiante.

EVALUACIÓN (INSTRUMENTOS DE EVALUACIÓN, CRITERIOS DE EVALUACIÓN Y PORCENTAJE SOBRE LA

INFORMACIÓN SOBRE TITULACIONES DE LA UGR grados.ugr.es

Firmado por: DAVID LOPEZ MARTIN Secretario/a de Departamento

Sello de tiempo: 04/07/2017 19:22:52 Página: 5 / 7

W37g/9235tlRyselxu/E735CKCJ3NmbA

La integridad de este documento se puede verificar en la dirección https://sede.ugr.es/verifirma/pfinicio.jsp introduciendo el código de barras.

CALIFICACIÓN FINAL, ETC.)

La *Evaluación Continua* se realizará del siguiente modo:

- 1.- Pruebas teórico-prácticas (50%): Se realizarán tres pruebas teórico-prácticas presenciales, una por cada bloque de la asignatura.
 - Primer Parcial: Cálculo Matricial
 - Segundo Parcial: Inestabilidad de Estructuras
 - Tercer Parcial: Método de los Elementos Finitos

El formato de estos exámenes se realizará mediante tests de marcas con justificación de respuestas.

- 2.- Pruebas cortas o test de marcas de 15 minutos, en clase (10%): De forma periódica se realizarán en clase ejercicios cortos que serán corregidos mediante un sistema de marcas. Su porcentaje de participación será 0,40; 0,30; 0,30, según la parte a la que corresponda cada test de clase (Cálculo Matricial, Elementos Finitos e Inestabilidad, respectivamente).
- 3.- Estudio y Trabajo individual (20%): Estas actividades consistirán en la realización de cuestionarios individualizados en la plataforma PRADO. Este trabajo tendrá carácter estrictamente individual, y cualquier detección de copia o fraude será calificado con 0 puntos en la asignatura.

Para la realización de algunas de las cuestiones se hará uso del lenguaje de programación **Python**, a nivel básico. No se requieren conocimientos previos de este lenguaje. Se empleará como herramienta que permita realizar operaciones matemáticas con matrices (suma, multiplicación, ensamblaje, resolución del sistema de ecuaciones, resolución de problemas de valores propios generalizados, funciones, objetos, gráficas, etc).

Para estos ejercicios se recomendará el manejo del entorno Spyder de la versión 2.7 del lenguaje Python. Para disponer de este entorno puede instalarse la distribución Anaconda, de Continuum Analytics (gratuita).

4.- **Prácticas de SAP2000 (20%)**: Se propondrá la realización por parte del alumno de una serie de prácticas individuales que le permitirán trabajar de forma autónoma con el programa de cálculo SAP 2000. La realización de estas prácticas es estrictamente individual. En caso de detectarse plagio o copia, el estudiante tendrá la calificación de 0 puntos global en la asignatura.

El sistema de trabajo se dividirá en 2 fases.

- Fase de trabajo y entrega (80% de la calificación de cada taller): Durante el plazo de 1 semana, de forma individual, el alumno realizará una práctica, que será personalizada. La entrega será en formato pdf y de forma anónima. La práctica se redactará en formato OpenOffice o Word, y se convertirá en formato pdf. La práctica se redactará por aspectos, que posteriormente formarán la base para la evaluación por pares.
- Fase de revisión (20% de la calificación): Al final de la fase de entrega, se asignará a cada participante 5 trabajos.
 El profesorado proporcionará una guía de evaluación. Cada alumno deberá evaluar y proporcionar comentarios de retroalimentación.

RÉGIMEN DE ASISTENCIA.

La asistencia a todas las clases tanto teóricas como prácticas es recomendable. El alumnado debe tener en cuenta que en el desarrollo de las clases se realizarán actividades que computan en la evaluación continua.

INFORMACIÓN SOBRE TITULACIONES DE LA UGR grados.ugr.es

Firmado por: DAVID LOPEZ MARTIN Secretario/a de Departamento

Sello de tiempo: 04/07/2017 19:22:52 Página: 6 / 7

W37g/9235tlRyselxu/E735CKCJ3NmbA

La integridad de este documento se puede verificar en la dirección https://sede.ugr.es/verifirma/pfinicio.jsp introduciendo el código de barras.

CRITERIO DE CALIFICACIÓN PARA EVALUACIÓN CONTINUA.

Será condición necesaria <u>obtener una nota mínima</u> de 4 puntos sobre 10 en las pruebas teórico-prácticas de forma independiente. Sólo en ese caso se sumarán el resto de calificaciones de evaluación por curso.

Para poder contabilizar la calificación de parciales en el sistema de evaluación continua, será necesario cumplir los siguientes requisitos.

- 1.- Obtener un mínimo de 2 puntos sobre 10 en cada uno de los tres bloques.
- 2.- La media ponderada (0.40, 0.30, 0.30) entre las tres partes debe superar 4 puntos sobre 10.

En caso de no cumplirse estos criterios, no se contabilizarán el resto de calificaciones de evaluación continua, suponiendo directamente la no superación de la asignatura en la convocatoria de junio. Se establecerá una calificación numérica basada en el porcentaje de actividades realizadas hasta el momento de obtener dicha calificación, no superándose en ningún caso los 4.5 puntos.

DESCRIPCIÓN DE LAS PRUEBAS QUE FORMARÁN PARTE DE LA EVALUACIÓN ÚNICA FINAL ESTABLECIDA EN LA "NORMATIVA DE EVALUACIÓN Y DE CALIFICACIÓN DE LOS ESTUDIANTES DE LA UNIVERSIDAD DE GRANADA"

La Evaluación será continua, salvo si el alumno solicita *Evaluación Única Final* en las <u>dos primeras semanas</u> de impartición de la asignatura, por motivos laborales, estado de salud, discapacidad o cualquier otra causa debidamente justificada, tal y como establece el artículo 8 de la NCG71/2. En ese caso, ésta consistirá en un examen teórico-práctico del programa de la asignatura en la fecha indicada por el Centro.

La **Evaluación Única Final** se realizará del siguiente modo:

Se realizará un único examen, con tres partes, correspondientes a cada uno de los bloques en que se divide la asignatura.

- A.- Cálculo Matricial
- **B.- Elementos Finitos**
- C.- Inestabilidad

Para aprobar este examen será necesario cumplir los siguientes requisitos

- 1.- Obtener un mínimo de 5 puntos sobre 10 en el bloque de Cálculo Matricial.
- 2.- Obtener un mínimo de 5 puntos sobre 10 en otro de los dos bloques B o C.
- 3.- Obtener en el tercer bloque restante una nota mínima de 3 puntos sobre 10.
- 4.- Obtener una media ponderada superior a 5 puntos (40% Matricial, 30% Elementos Finitos, 30% Inestabilidad)

INFORMACIÓN ADICIONAL

Los estudiantes están obligados a actuar en la pruebas de evaluación de acuerdo con los principios de mérito individual y autenticidad del ejercicio. Cualquier actuación contraria en ese sentido dará lugar a la calificación numérica de cero (artículo 10 de la NCG71/2). En consecuencia, la detección de una acción fraudulenta tanto en el examen como en cualquier actividad individual que se proponga supondrá una calificación final de cero.

INFORMACIÓN SOBRE TITULACIONES DE LA UGR grados.ugr.es

Firmado por: DAVID LOPEZ MARTIN Secretario/a de Departamento

Sello de tiempo: 04/07/2017 19:22:52 Página: 7 / 7

W37g/9235tlRyselxu/E735CKCJ3NmbA

La integridad de este documento se puede verificar en la dirección https://sede.ugr.es/verifirma/pfinicio.jsp introduciendo el código de verificación que aparece debajo del código de barras.