GUIA DOCENTE DE LA ASIGNATURA (∾) MECÁNICA PARA INGENIEROS

Curso 2017-2018

(Fecha última actualización: 19/06/2017) (Fecha de aprobación en Consejo de Departamento: 29/06/2017)

		1	T		
MÓDULO	MATERIA	CURSO	SEMESTRE	CRÉDITOS	TIPO
Formación básica	Mecánica para Ingenieros	2º	1º	9	Básica
PROFESORES ⁽¹⁾			DIRECCIÓN COMPLETA DE CONTACTO PARA TUTORÍAS (Dirección postal, teléfono, correo electrónico, etc.)		
 Alejandro E. Martínez Castro¹ Rafael Muñoz Beltrán² Juan José Granados Romera³ Germán Rodríguez Salido⁴ Gracia Rodríguez Gerónimo⁵ 			Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Avenida Fuentenueva sn 18002, Granada. Dpto. Mecánica de Estructuras e Ingeniería Hidráulica, 4ª planta, ETS de Ingenieros de Caminos, Canales y Puertos. Despachos y correos electrónicos: (1) Despacho 12, amcastro@ugr.es (2) Despacho 4, rmb@ugr.es (3) Despacho 6, jjgr@ugr.es (4) Despacho 7, grodsal@ugr.es (5) Despacho 31, grodger@ugr.es HORARIO DE TUTORÍAS Y/O ENLACE A LA PÁGINA WEB DONDE PUEDAN CONSULTARSE LOS HORARIOS DE TUTORÍAS(1) Ver página web del departamento http://meih.ugr.es		
GRADO EN EL QUE SE IMPARTE			OTROS GRADOS A LOS QUE SE PODRÍA OFERTAR		
Grado en Ingeniería Civil					
PRERREQUISITOS Y/O RECOMENDACIONES (si procede)					

¹ Consulte posible actualización en Acceso Identificado > Aplicaciones > Ordenación Docente (∞) Esta guía docente debe ser cumplimentada siguiendo la "Normativa de Evaluación y de Calificación de los estudiantes de la Universidad de Granada" (http://secretariageneral.ugr.es/pages/normativa/fichasugr/ncg7121/!)

INFORMACIÓN SOBRE TITULACIONES DE LA UGR grados.ugr.es

Firmado por: DAVID LOPEZ MARTIN Secretario/a de Departamento

Sello de tiempo: 04/07/2017 19:35:05 Página: 1 / 13

/SqOe9nzLo8jw1vcSm/tJ35CKCJ3NmbA

La integridad de este documento se puede verificar en la dirección https://sede.ugr.es/verifirma/pfinicio.jsp introduciendo el código de verificación que aparece debajo del código de barras.

Tener cursadas las asignaturas de: Física, Análisis Matemático, Matemática Aplicada.

Tener conocimientos adecuados sobre:

- Fundamentos de Informática.
- · Ingeniería Gráfica I.

BREVE DESCRIPCIÓN DE CONTENIDOS (SEGÚN MEMORIA DE VERIFICACIÓN DEL GRADO)

Principios de la Mecánica. Análisis Vectorial. Estática. Estática de hilos. Geometría de masas. Cinemática del punto. Dinámica del punto material. Cinemática del sólido. Dinámica de los sistemas y del sólido rígido.

COMPETENCIAS GENERALES Y ESPECÍFICAS

COMPETENCIAS GENERALES

- CG02: Comprensión de los múltiples condicionamientos de carácter técnico y legal que se plantean en la construcción de una obra pública, y capacidad para emplear métodos contrastados y tecnologías acreditadas, con la finalidad de conseguir la mayor eficacia en la construcción dentro del respeto por el medio ambiente y la protección de la seguridad y salud de los trabajadores y usuarios de la obra pública.
- CG01: Capacitación científico-técnica para el ejercicio de la profesión de Ingeniero Técnico de Obras Públicas y conocimiento de las funciones de asesoría, análisis, diseño, cálculo, proyecto, construcción, mantenimiento, conservación y explotación.
- CB1: Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio.
- CB2: Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio.
- CB3: Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro
 de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social,
 científica o ética.
- CB5: Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía.

COMPETENCIAS ESPECÍFICAS

- CFB4: Comprensión y dominio de los conceptos básicos sobre las leyes generales de la mecánica, termodinámica, campos y ondas y electromagnetismo y su aplicación para la resolución de problemas propios de la ingeniería.
- COP2: Conocimiento teórico y práctico de las propiedades químicas, físicas, mecánicas y tecnológicas de los materiales más utilizados en construcción.
- COP3: Capacidad para aplicar los conocimientos de materiales de construcción en sistemas estructurales.
 Conocimiento de la relación entre la estructura de los materiales y las propiedades mecánicas que de ella se derivan.
- COP4: Capacidad para analizar y comprender cómo las características de las estructuras influyen en su comportamiento. Capacidad para aplicar los conocimientos sobre el funcionamiento resistente de las estructuras para dimensionarlas siguiendo las normativas existentes y utilizando métodos de cálculo analíticos y numéricos.

OBJETIVOS (EXPRESADOS COMO RESULTADOS ESPERABLES DE LA ENSEÑANZA)

INFORMACIÓN SOBRE TITULACIONES DE LA UGR grados.ugr.es

Firmado por: DAVID LOPEZ MARTIN Secretario/a de Departamento

Sello de tiempo: 04/07/2017 19:35:05 Página: 2 / 13

/SqOe9nzLo8jw1vcSm/tJ35CKCJ3NmbA

La integridad de este documento se puede verificar en la dirección https://sede.ugr.es/verifirma/pfinicio.jsp introduciendo el código de verificación que aparece debajo del código de barras. El alumno deberá adquirir una serie de capacidades que forman la base imprescindible para un gran número de materias impartidas en cursos posteriores, entre otras Mecánica de Suelos y Rocas, Geotecnia, Teoría de las Estructuras, Análisis de Estructuras, Mecánica de Fluidos, Dinámica Estructural, Mecánica de Medios Continuos, etc. Estas capacidades se sintetizan fundamentalmente en la competencia CFB4.

Los objetivos que los alumnos deberán adquirir en la asignatura Mecánica para Ingenieros son los siguientes:

- Manejar correctamente los sistemas de fuerzas, tanto discretos como continuos, calculando su resultante, momento y eje central, y comprendiendo el concepto de sistemas de fuerzas equivalentes.
- Manejar correctamente los sistemas de unidades que se emplean en mecánica.
- Plantear y resolver las ecuaciones de equilibrio estático y dinámico de sistemas mecánicos sobre los que actúen distintos tipos de fuerzas.
- Caracterizar la estabilidad de equilibrios, para sistemas mecánicos sencillos.
- Utilizar el principio de los trabajos virtuales para establecer ecuaciones de equilibrio.
- Formular y analizar el equilibrio de cables e hilos suspendidos sometidos a fuerzas concentradas y a peso propio.
- Comprender las limitaciones de la idealización de sistemas mecánicos mediante sólidos rígidos e hilos inextensibles.
- Comprender y manejar los conceptos de dinámica analítica, planteando soluciones de problemas en coordenadas generalizadas.
- Analizar el movimiento vibratorio de sistemas de un grado de libertad.
- Analizar el movimiento lineal de oscilaciones de múltiples grados de libertad mediante análisis modal.
- Determinar la posición de centros de gravedad y momentos de inercia de los cuerpos planos y tridimensionales de interés para la Ingeniería Civil.
- Utilizar los métodos analíticos y numéricos para establecer una discusión en torno a los parámetros que gobiernan los problemas en estática y en dinámica. (Competencia COP4)
- Capacidad para plantear modelos paramétricos por ordenador, con herramientas de programación, basadas
 en programación orientada a objetos y procedimental, con capacidad para establecer la dependencia de la
 respuesta a las dimensiones y propiedades de materiales de los objetos. En este sentido, deberá ser capaz de
 utilizar los métodos numéricos y analíticos para explorar el espacio de soluciones de los problemas,
 dimensionando diferentes elementos ingenieriles con condicionamiento estático y dinámico.
- Capacidad para redactar documentación técnica orientada a que un técnico diferente del autor original pueda interpretarla. (Competencia CB2)
- Capacidad para revisar y criticar técnicamente, con defensa de argumentos, documentación técnica elaborada por un autor diferente al propio revisor (Competencia CB2).
- Conocer el uso de asistentes matemáticos para obtener soluciones analíticas simbólicas en problemas de mecánica.
- Conocer el uso de asistentes matemáticos para obtener soluciones numéricas, poniendo en relieve el papel de los métodos numéricos para mecánica computacional.
- Conocer el manejo de los objetos y sus propiedades a nivel computacional. Este planteamiento es importante para introducir el paradigma de los sistemas BIM en ingeniería.

TEMARIO DETALLADO DE LA ASIGNATURA

INFORMACIÓN SOBRE TITULACIONES DE LA UGR grados.ugr.es

Firmado por: DAVID LOPEZ MARTIN Secretario/a de Departamento

Sello de tiempo: 04/07/2017 19:35:05 Página: 3 / 13

/SqOe9nzLo8jw1vcSm/tJ35CKCJ3NmbA

TEMARIO TEÓRICO

PARTE I: INTRODUCCIÓN

- 1. MARCO DE REFERENCIA DE LA MECÁNICA CLÁSICA.
- 1.1. Leyes de Newton.
- 1.2. Principio de invarianza de Galileo.
- 1.3. Sistemas de unidades.

PARTE II. MATEMÁTICA PARA LA MECÁNICA BÁSICA

2.VECTORES

- 2.1. Magnitudes físicas.
- 2.2. Concepto de vector.
- 2.3. Vectores unitarios.
- 2.4. Tipos de vectores: vector fijo, vector deslizante, vector libre.
- 2.5. Vectores equipolentes.
- 2.6. Operaciones con vectores libres.
- 2.7. Producto escalar y vectorial. Diadas.
- 2.8. Ecuaciones de elementos geométricos en el espacio: la recta y el plano.

3. SISTEMAS DE VECTORES DESLIZANTES.

- 3.1. Estudio del vector deslizante: momento de un vector respecto a un punto. Momento áxico.
- 3.2. Sistemas de vectores deslizantes.
 - 3.2.1. Resultante del sistema.
 - 3.2.2. Momento del sistema respecto de un punto.
 - 3.2.3. Ecuación del cambio de momento.
 - 3.2.4. Propiedades del campo de momentos.
 - 3.2.5. Momento áxico del sistema.
 - 3.2.6. Segundo invariante del sistema. Invariante escalar.
 - 3.2.7. Momento mínimo del sistema. Eje central.
 - 3.2.8. Estructura del campo de momentos.
 - 3.2.9. Clasificación de los sistemas de vectores deslizantes.
 - 3.2.10. Igualdad de sistemas.
 - 3.2.11. Equivalencia de sistemas.
 - 3.2.12. Reducción de sistemas.
 - 3.2.13. Reducción de los distintos tipos de sistemas.
- 3.3. Sistemas degenerados.
 - 3.3.1. Sistemas de un solo vector.
 - 3.3.2. Par de vectores.
 - 3.3.3. Sistemas de vectores concurrentes.
 - 3.3.4. Sistemas de vectores paralelos.
 - 3.3.5. Sistemas de vectores planos.
- 3.4. Métodos gráficos para sistemas de vectores deslizantes planos.

TEMA 4: FUNCIONES VECTORIALES.

- 4.1. Función vectorial de variable escalar.
- 4.2. Indicatriz de una función vectorial.
- 4.3. Derivada de una función vectorial.

INFORMACIÓN SOBRE TITULACIONES DE LA UGR grados.ugr.es

Firmado por: DAVID LOPEZ MARTIN Secretario/a de Departamento

Sello de tiempo: 04/07/2017 19:35:05 Página: 4 / 13

/SqOe9nzLo8jw1vcSm/tJ35CKCJ3NmbA

TEMA 5. GEOMETRÍA DIFERENCIAL DE CURVAS.

- 5.1. Triedro de Frenet.
- 5.2. Planos y versores del triedro de Frenet.
- 5.3. Derivadas de los versores del triedro de Frenet.
- 5.4. Fórmulas de Frenet.
- 5.5. Ecuaciones de los planos y rectas del triedro de Frenet.

TEMA 6: SISTEMAS DE REFERENCIA EN MECÁNICA CLÁSICA.

- 6.1. Sistema cartesiano.
- 6.2. Sistemas de referencia dependientes del escalar.
 - 6.2.1. Sistema de coordenadas polar.
 - 6.2.2. Sistema de coordenadas cilíndricas.
 - 6.2.3. Sistema de coordenadas esféricas.

PARTE III: GEOMETRÍA DE MASAS.

TEMA 7. CENTRO DE MASAS.

- 7.1. Centro de masas y centro de gravedad en sistemas materiales discontinuos.
- 7.2. Centro de masas en sistemas materiales continuos.
- 7.3. Centro de masas de un conjunto de sistemas materiales.
- 7.4. Teoremas de Pappus-Guldin.
 - 7.4.1. Primer teorema de Pappus-Guldin.
 - 7.4.2. Segundo teorema de Pappus-Guldin.
- 7.5. Centro de masas en dos dimensiones.

TEMA 8. MOMENTO DE INERCIA.

- 8.1. Momento de inercia de una partícula material.
- 8.2. Momento de inercia de un sistema material discontinuo de partículas.
- 8.3. Momento de inercia de sistemas materiales continuos.
- 8.4. Momentos de inercia respecto de los elementos de un sistema cartesiano.
- 8.5. Radio de giro.
- 8.6. Producto de inercia respecto a dos planos.
- 8.7. Teoremas de Steiner.
- 8.8. Tensor de inercia.
- 8.9. Momentos de inercia respecto de un sistema de referencia rotado en el origen.
- 8.10. Círculo de Mohr para sistemas bidimensionales.
- 8.11. Elipse y elipsoide de inercia.
- 8.12. Momentos de inercia respecto de un sistema trasladado.
- 8.13. Direcciones principales de inercia. Diagonalización del tensor de inercia.
- 8.14. Momentos y productos de inercia de figuras planas.
- 8.15. Cuestiones prácticas para el cálculo.

PARTE IV: CINEMÁTICA

TEMA 9. CINEMÁTICA DEL PUNTO MATERIAL.

- 9.1. Posición y trayectoria de una partícula.
- 9.2. Velocidad de la partícula. Hodógrafa.

INFORMACIÓN SOBRE TITULACIONES DE LA UGR grados.ugr.es

Firmado por: DAVID LOPEZ MARTIN Secretario/a de Departamento

Sello de tiempo: 04/07/2017 19:35:05 Página: 5 / 13

/SqOe9nzLo8jw1vcSm/tJ35CKCJ3NmbA

- 9.3. Aceleración de la partícula. Componentes intrínsecas de la aceleración.
- 9.4. Casos particulares de movimiento.
- 9.5. Velocidad y aceleración en coordenadas polares.
- 9.6. Velocidad y aceleración en coordenadas cilíndricas.
- 9.7. Velocidad y aceleración en coordenadas esféricas.

TEMA 10. CINEMÁTICA DEL SÓLIDO RÍGIDO.

- 10.1. Movimiento general del sólido rígido.
 - 10.1.1 Campo de velocidades del sólido rígido. Eje instantáneo de rotación y deslizamiento.
 - 10.1.2. Campo de aceleraciones. Polo de aceleraciones. Vector aceleración angular.
 - 10.1.3. Composición de rotaciones.
- 10.2. Movimientos degenerados del sólido rígido.
- 10.3. Movimiento del triedro intrínseco.

PARTE V: ESTÁTICA.

TEMA 11. INTRODUCCIÓN A LA ESTÁTICA Y LA DINÁMICA.

- 11.1. Fuerzas sobre los sistemas materiales.
- 11.2. Enlaces y grados de libertad de un sistema material.
- 11.3. Rozamiento.
- 11.4. Axiomas de la estática y la dinámica.

TEMA 12. ESTÁTICA DE LOS SISTEMAS MATERIALES.

- 12.1. Objeto de la estática.
- 12.2. Equilibrio de una partícula material.
- 12.3. Equilibrio de un sistema de partículas materiales.
- 12.4. Equilibrio del sólido rígido.
- 12.5. Sistemas isostáticos, hiperestáticos, mecanismos.
- 12.6. Casos prácticos: articulaciones, cuerdas, poleas y distribuciones de fueras.
- 12.7. Estabilidad del equilibrio. Teorema de Lejeune-Dirichlet.
- 12.8. Principio de los Trabajos Virtuales.

TEMA 13. ESTÁTICA DE HILOS.

- 13.1. Introducción, definición y planteamiento del problema en hilos.
- 13.2. Hilo sometido a un sistema discreto de fuerzas coplanarias.
- 13.3. Hilo sometido a un sistema continuo de fuerzas.

TEMA 14. HILOS SUSPENDIDOS.

- 14.1. Hilo apoyado en dos puntos con carga vertical continua.
- 14.2. Catenaria.
- 14.3. Parábola.
- 14.4. Aproximación de la catenaria a la parábola.

INFORMACIÓN SOBRE TITULACIONES DE LA UGR grados.ugr.es

Firmado por: DAVID LOPEZ MARTIN Secretario/a de Departamento

Sello de tiempo: 04/07/2017 19:35:05 Página: 6 / 13

/SqOe9nzLo8jw1vcSm/tJ35CKCJ3NmbA

PARTE VI: DINÁMICA

TEMA 15. DINÁMICA DE LA PARTÍCULA MATERIAL.

- 15.1. Magnitudes cinéticas.
 - 15.1.1. Momento lineal o cantidad de movimiento.
 - 15.1.2. Momento cinético o momento angular respecto de un punto.
 - 15.1.3. Energía cinética.
- 15.2. Magnitudes dinámicas. Fuerza. Momento. Trabajo. Fuerzas conservativas.
- 15.3. Leyes fundamentales de la dinámica de la partícula material.
 - 15.3.1. Ley del momento lineal. Conservación del momento lineal.
 - 15.3.2. Ley del momento cinético. Conservación del momento cinético.
 - 15.3.3. Ley fundamental de la energía. Conservación de energía.

TEMA 16. DINÁMICA DE LOS SISTEMAS DE PARTÍCULAS.

- 16.1. Introducción. Centro de masas. Sistema de referencia.
- 16.2. El sistema cinético.
 - 16.2.1. Cantidad de movimiento del sistema.
 - 16.2.2. Momento angular del sistema. Segundo teorema de Köning.
 - 16.2.3. Energía cinética. Primer teorema de Köning.
- 16.3. El sistema dinámico. Trabajo, energía y potencia.
- 16.4. Leyes fundamentales de la dinámica de sistemas de partículas.
 - 16.4.1. Ley del momento lineal. Conservación.
 - 16.4.2. Ley del momento cinético. Conservación.
 - 16.4.3. Ley del trabajo y la energía.
 - 16.4.4. Leyes de la dinámica del movimiento plano.

TEMA 17. DINÁMICA DEL SÓLIDO RÍGIDO.

- 17.1. El sistema cinético de un sólido rígido. Momento lineal. Momento cinético.
- 17.2. Energía cinética.
- 17.3. El sistema dinámico: trabajo.
- 17.4. Ecuaciones del movimiento del sólido rígido.

TEMA 18. INTRODUCCIÓN A LA DINÁMICA ANALÍTICA.

- 18.1. Análisis funcional.
 - 18.1.1 Concepto de funcional.
 - 18.1.2. Ecuación de Euler-Lagrange de una variable.
 - 18.1.3. Ecuaciones de Euler-Lagrange para funcionales dependientes de varias variables.
- 18.2. Coordenadas generalizadas.
- 18.3. Principio de D'Alembert en coordenadas generalizadas.
- 18.4. Función lagrangiana.
- 18.5. Desarrollo de las ecuaciones del movimiento.

TEMA 19. VIBRACIONES DE SISTEMAS DE UN GRADO DE LIBERTAD.

- 19.1. Ecuación de movimiento.
- 19.2. Vibraciones libres.
 - 19.2.1. Vibraciones libres no amortiguadas.
 - 19.2.2 Vibraciones libres amortiguadas.
- 19.3. Vibraciones forzadas.
 - 19.3.1. Vibraciones forzadas no amortiguadas. Resonancia.

INFORMACIÓN SOBRE TITULACIONES DE LA UGR grados.ugr.es

Firmado por: DAVID LOPEZ MARTIN Secretario/a de Departamento

Sello de tiempo: 04/07/2017 19:35:05 Página: 7 / 13

/SqOe9nzLo8jw1vcSm/tJ35CKCJ3NmbA

19.3.2. Vibraciones forzadas amortiguadas.

TEMA 20. OSCILACIONES LINEALES DE SISTEMAS DE MÚLTIPLES GRADOS DE LIBERTAD.

20.1. Ecuaciones del movimiento.

20.2. Linealización para pequeños movimientos.

20.3. Formulación matricial.

20.4. Oscilaciones libres.

20.4.1. Problema de valores propios.

20.4.2. Frecuencias propias y modos normales de vibración.

20.4.3. Análisis modal. Coordenadas normales.

20.4.4. Condiciones iniciales.

20.4.5. Oscilaciones libres con amortiguamiento.

20.5. Oscilaciones forzadas.

20.6. Métodos numéricos para el cálculo de modos y frecuencias.

TEMARIO PRÁCTICO:

Junto con las clases de problemas, propios de una asignatura como Mecánica, se realizarán Talleres y Cuestionarios.

1. Talleres prácticos

El temario de talleres prácticos está planteado para que el alumno desarrolle, en el marco de la competencia CB2, habilidades para la redacción y revisión de documentos técnicos, fomentando el trabajo autónomo y el pensamiento crítico. Estas prácticas se han planteado en formato de Taller, de Moodle/PRADO. Este sistema permite diferenciar el trabajo en dos fases: fase de trabajo (preparación y entrega) y fase de revisión.

Por otro lado, las prácticas pretenden un acercamiento al mundo de la ingeniería civil, y a la experimentación numérica o en laboratorio.

Durante el curso se realizarán 3 talleres prácticos, calificados mediante un sistema de revisión por pares.

PRÁCTICA 1: Cálculo de propiedades inerciales de un cajón portuario de grandes dimensiones, de celdas circulares o rectangulares. Estos cálculos son necesarios en las fases de transporte y fondeo de estos cajones. Se refuerzan los ítems del temario centrados en geometría de masas.

PRÁCTICA 2: Cálculo de una celosía de acero isostática. Se abordará el cálculo de las fuerzas internas y reacciones para el caso de una estructura articulada con configuración real.

PRÁCTICA 3: Caracterización dinámica de un sistema masa-muelle-amortiguador, a partir de medidas de laboratorio. Se planteará un sistema de 1 grado de libertad equivalente, para una configuración de viga en voladizo. Caracterización experimental del amortiguamiento mediante el método del decremento logarítmico.

Para las partes numéricas se utilizarán recursos del lenguaje Python y su ecosistema (numpy, matplotlib, sympy, sympy.mechanics, Jupyter notebook, Jupyter lab).

2. Cuestionarios Moodle/PRADO

Semanalmente, se liberarán cuestionarios de realización en Moodle/PRADO. En los mismos se trabajará con contenidos vistos durante la semana (teoría y problemas) y se planteará, al menos, 1 cuestión para la cual se requiera experimentación numérica con Python. En ningún caso será necesario programar "desde cero", pero sí utilizar el código para plantear soluciones, variantes, o análisis sensitivo, entendiendo las relaciones de entradasalida características de cada problema. El contenido de estas prácticas irá orientado a los siguientes contenidos:

• Cálculos elementales en Python en modo interactivo / modo ficheros.

INFORMACIÓN SOBRE TITULACIONES DE LA UGR grados.ugr.es

Firmado por: DAVID LOPEZ MARTIN Secretario/a de Departamento

Sello de tiempo: 04/07/2017 19:35:05 Página: 8 / 13

/SqOe9nzLo8jw1vcSm/tJ35CKCJ3NmbA

La integridad de este documento se puede verificar en la dirección https://sede.ugr.es/verifirma/pfinicio.jsp introduciendo el código de verificación que aparece debajo del código de barras.

- Matrices y vectores: operaciones con numpy.
- Problemas de valores propios: diagonalización del tensor de inercia. Análisis modal.
- Gráficas con matplotlib para visualización de resultados.
- Cálculo simbólico con sympy, sympy.mechanics y PyDy. Aplicación en el estudio de sistemas dinámicos simples y multicuerpo.
- Lectura de registros instrumentales e interpretación de resultados, relacionándolos con los contenidos teóricos. Aplicación al cálculo de la tasa de amortiguamiento de un sistema de un grado de libertad a partir de un registro instrumental.

BIBLIOGRAFÍA

BIBLIOGRAFÍA FUNDAMENTAL:

- R. Muñoz Beltran. Mecánica Básica Universitaria para Ingeniería Civil. Editorial. Copicentro. Granada
- F.P. Beer, E.R. Johnston, D. Mazurek, P. J. Cornwell, B. P. Self. Vector Mechanics for Engineers (11 ed.) McGraw-Hill. (Traducciones en castellano por McGraw-Hill).
- J. L. Meriam, L. G. Kaige. Engineering Mechanics. Statics and Dynamics. John Wiley & Sons.

BIBLIOGRAFÍA COMPLEMENTARIA:

Libros sobre mecánica.

- Prieto Alberca M. Curso de Mecánica Racional. Editorial Prefijo Editorial Común.
- Vázquez M., López E. Mecánica para Ingenieros: Estática y Dinámica. Editorial Noela
- Bastero J.M., Casellas J. Curso de Mecánica. Editorial EUNSA.
- Scala JJ. Física I y II. Publicaciones de la ETSI Industriales de la Universidad Politécnica de Madrid
- Scala JJ. Análisis Vectorial. Volumen 1: Vectores. Sociedad de Amigos de la ETSI Industriales de la Universidad Politécnica de Madrid
- Mecánica I y II. Díaz de la Cruz J.M., Sánchez Pérez A.M. Publicaciones de la ETSI Industriales de la Universidad Politécnica de Madrid
- J. M. Goicolea. Curso de Mecánica. Colegio de Ingenieros de Caminos, Canales y Puertos. Publicación abierta (http://w3.mecanica.upm.es/~goico/mecanica/libro
- P. Museros Romero. Mecánica: estática y cálculo vectorial. Editorial Universidad Politécnica de Valencia.
- R. C. Hibbeler. Engineering Mechanics. Statics & Dynamics. Ed. Prentice Hall.
- J. P. Den Hartog. Mechanics. Dover Publications.
- I. P. Den Hartog, Mechanical Vibrations, Dover Publications.
- C. Lanczos. The variational principles of mechanics. Dover Publications.

Libros sobre Python para ingeniería y mecánica.

- John V. Guttag. Introduction to Computation and Programming Using Python. The MIT Press.
- A. M. Sørenssen. Elementary Mechanics Using Python: A Modern Course Combining Analytical and Numerical Techniques. Springer.

ENLACES RECOMENDADOS

Sobre Python (Necesario para el curso. Descarga gratuita)

- Anaconda Python. https://www.continuum.io/downloads
- Jupyter: http://jupyter.org/
- Numpy: http://www.numpy.org/
- Matplotlib: https://matplotlib.org/

INFORMACIÓN SOBRE TITULACIONES DE LA UGR grados.ugr.es

Firmado por: DAVID LOPEZ MARTIN Secretario/a de Departamento

Sello de tiempo: 04/07/2017 19:35:05 Página: 9 / 13

/SqOe9nzLo8jw1vcSm/tJ35CKCJ3NmbA

- Tutorial de python general: http://docs.python.org.ar/tutorial/
- Sympy: http://www.sympy.org/es/
- Sympy.mechanics: http://docs.sympy.org/dev/modules/physics/mechanics/
- PyDy (Paquete de dinámica multicuerpo para Python): http://www.pydy.org/,
 https://github.com/pydy/pydy
- Curso de Python de Juan Luis Cano (http://cacheme.org/curso-online-python-cientifico-ingenieros/

Mecánica: Cursos MOOC y online complementarios:

- George Stephans. 8.01L Physics I: Classical Mechanics. Fall 2005. Massachusetts Institute of Technology: MIT OpenCourseWare, https://ocw.mit.edu. License: https://ocw.mit.edu/courses/physics/8-01l-physics-i-classical-mechanics-fall-2005/index.htm)
- J. Vandiver, and David Gossard. 2.003SC Engineering Dynamics. Fall 2011. Massachusetts Institute of Technology: MIT OpenCourseWare, https://ocw.mit.edu. License: https://ocw.mit.edu/courses/mechanical-engineering/2-003sc-engineering-dynamics-fall-2011/)
- J. Vandiver, and Nicholas Patrikalakis. 2.003J Dynamics and Vibration (13.013J). Fall 2002. Massachusetts
 Institute of Technology: MIT OpenCourseWare, https://ocw.mit.edu/courses/mechanical-engineering/2-003j-dynamics-and-vibration-13-013j-fall-2002/#)
- MechCx: Advanced Introductory Classical Mechanics (Creado por el MIT, en pataforma edX). (https://courses.edx.org/courses/MITx/8.MechCx/1T2015/info)
- J. M. Goicolea, F. Gabaldón, J.C.García, J.J.Arribas. Mecánica. Curso online OpenCourseWare de la Universidad Politécnica de Madrid. Creative Commons BY-NC-SA (http://ocw.upm.es/mecanica-de-medios-continuos-y-teoria-de-estructuras/mecanica)
- Otros MOOC sobre mecánica. En el siguiente enlace se proporciona el acceso a todos los MOOC disponibles sobre Mecánica Clásica: (https://www.mooc-list.com/tags/classical-mechanics)

Sobre historia de la Física y la Mecánica:

- http://www.galeon.com/histofis/histfisindex.htm. Historia de la Física Universidad Cienfuegos (Cuba):
 Extensa web de historia de la Física cronológicamente desarrollada.
- http://www.lawebdefisica.com/docs/BioNewton.php. Biografía de Newton.
- http://www.acienciasgalilei.com/biograf0.htm. Listado de Físicos importantes.

Sobre Mecánica:

- http://abelgalois.blogspot.com/2009/07/el-universo-mecanico-mechanical.html. Blog con enlaces a la serie de divulgación "El universo mecánico". Disponible también en DVD en la Facultad de Ciencias de la UGR.
- http://w3.mecanica.upm.es/~goico/mecanica/libro/ Página de apuntes de mecánica, del prof. Dr. José María Goicolea

Sobre Física y Matemáticas:

- http://www.vc.ehu.es/campus/centros/farmacia/deptos-f/depme/apuntes/gracia/animadas/raiz.htm. Web de la Universidad del País Vasco con animaciones matemáticas. (revisar, no sale)
- http://www.sc.ehu.es/sbweb/fisica/default.htm. Explicaciones sobre la física que incluye gráficos interactivos de Ángel Franco, profesor de la Universidad del País Vasco.
- http://acer.forestales.upm.es/basicas/udfisica/asignaturas/fisica/default.htm. Curso interactivo de Física Básica: Curso desarrollado por dos profesoras de la Universidad Politécnica de Madrid, Ana Serrano y Teresa Martín.

INFORMACIÓN SOBRE TITULACIONES DE LA UGR grados.ugr.es

Firmado por: DAVID LOPEZ MARTIN Secretario/a de Departamento

Sello de tiempo: 04/07/2017 19:35:05 Página: 10 / 13

/SqOe9nzLo8jw1vcSm/tJ35CKCJ3NmbA

METODOLOGÍA DOCENTE

Actividades Formativas Presenciales

- Clases Teóricas: El profesorado desarrollará los contenidos descritos en el programa de la asignatura que
 previamente se habrán facilitado al alumno. Durante el desarrollo de las clases los profesores podrán
 responder todas las dudas planteadas por los estudiantes e invitarán a la participación de los mismos
 proponiendo breves cuestiones así como desarrollarán ejercicios sobre los contenidos para permitir fijar los
 conceptos. El objeto de éstas es adquirir los conocimientos de la materia, potenciar la reflexión y una
 mentalidad crítica.
- Clases prácticas en el aula: Se resolverán ejercicios de aplicación de los conceptos teóricos empleando técnicas docentes que permitan al alumno afianzar los contenidos teóricos. El objetivo de estas actividades es que el alumno desarrolle las habilidades necesarias para la resolución de problemas estructurales.
- Evaluación individual: Se realizarán pruebas para comprobar los conocimientos adquiridos en el desarrollo de la asignatura.

Actividades Formativas No Presenciales

- Estudio y trabajo individual: El alumnado desarrollará actividades (guiadas y no guiadas) propuestas por el profesorado que le permitan de forma individual profundizar y avanzar en el estudio de la materia.
- El objetivo es que el alumnado planifique y autoevalúe su aprendizaje. En este sentido, se plantean Talleres y Cuestionarios, en la plataforma Moodle/PRADO.
- Tutorías individuales o en grupo: Seguimiento personalizado del aprendizaje del alumno. El objeto es orientar el trabajo del alumnado y orientar la formación académica del estudiante.

EVALUACIÓN (INSTRUMENTOS DE EVALUACIÓN, CRITERIOS DE EVALUACIÓN Y PORCENTAJE SOBRE LA CALIFICACIÓN FINAL, ETC.)

La Evaluación Continua será el sistema de evaluación preferente (art. 6.2. de la Normativa de evaluación de la UGR.). El alumno que por causas justificadas (laborales, salud, discapacidad, programas de movilidad, otras causas) no pueda seguir el método de evaluación continua, deberá solicitar, siguiendo el procedimiento descrito en el artículo 8.2 de la Normativa de evaluación de la UGR, una evaluación única final, La evaluación continua se realizará del siguiente modo:

- 1.- Pruebas Teórico-Prácticas (60%). Se realizarán dos pruebas teórico-prácticas, agrupadas en 3 bloques.
 - Primer parcial: Bloque I (Partes I, II, III, IV) 20% de la nota.
 - Segundo parcial-final (en la fecha del examen final): Este examen tendrá un 40% de calificación, y se dividirá en dos bloques:. Estática (Bloque II, Parte V): 20% de la nota, y Dinámica (Bloque III, Parte VI): 20% de la nota.
- El formato de estos exámenes se realizará mediante tests de marcas con justificación de respuestas, fundamentalmente. Para estos exámenes, el alumno acudirá provisto de bolígrafo negro y cinta correctora. El profesorado proporcionará a cada alumno un código CID personalizado. Adicionalmente, algunas pruebas serán escritas.
- 2.- **Cuestionarios de Moodle/PRADO (15%)**. Cada cuestionario se realizará de manera estrictamente individual. El plazo para la realización de cada cuestionario será de 1 semana, y se dispondrá de 2 intentos. Para su calificación, se guardará la mejor nota de entre los dos intentos.
- 3.- **Talleres prácticos con revisión por pares**, en Moodle/PRADO (15%). Se realizarán 3 talleres en el formato Moodle/PRADO. Cada taller puntuará un 5% de la nota. (5 puntos cada práctica).

El sistema de trabajo se dividirá en 2 fases.

INFORMACIÓN SOBRE TITULACIONES DE LA UGR grados.ugr.es

Firmado por: DAVID LOPEZ MARTIN Secretario/a de Departamento

Sello de tiempo: 04/07/2017 19:35:05 Página: 11 / 13

/SqOe9nzLo8jw1vcSm/tJ35CKCJ3NmbA

La integridad de este documento se puede verificar en la dirección https://sede.ugr.es/verifirma/pfinicio.jsp introduciendo el código de verificación que aparece debajo del código de barras.

- Fase de trabajo y entrega (80% de la calificación de cada taller): Durante el plazo de 1 semana, de forma individual, el alumno realizará una práctica, que será personalizada. La entrega será en formato pdf y de forma anónima. La práctica se redactará en formato OpenOffice o Word, y se convertirá en formato pdf. La práctica se redactará por aspectos, que posteriormente formarán la base para la evaluación por pares.
- Fase de revisión (20% de la calificación): Al final de la fase de entrega, se asignará a cada participante 5 trabajos. El profesorado proporcionará una guía de evaluación. Cada alumno deberá evaluar y proporcionar comentarios de retroalimentación.

La calificación numérica será suma de las calculadas por PRADO, sobre 100 puntos. La calificación finalmente se cuantizará en los intervalos[0, 1, 2, 3, 4, 5]. Si la suma de las notas es 0, se cuantizará con 0. Para el resto de casos intermedios, la nota se calificará con la cota superior del intervalo de cuantización. Ejemplo: si la calificación de un taller es de 20 puntos por trabajo y 15 como revisor, la suma es 35. Teniendo en cuenta que el máximo es 5 en la escala, sobre 5 puntos, la calificación no cuantizada corresponde con 35/20 = 1.75. Esta nota está dentro del intervalo 1-2, para el cual se le asigna el límite superior: 2 puntos. Así, una práctica calificada con 35 puntos obtiene 2 puntos del global del curso (sobre 100).

4.- **Pruebas cortas o test de marcas de 15 minutos, en clase** (10%). Se realizarán varios tests en clase a lo largo del semestre, en su mayoría en formato de test de marcas con justificación de respuesta.

CRITERIO DE CALIFICACIÓN PARA EVALUACIÓN CONTINUA.

Para superar el curso mediante evaluación continua, será necesario de manera independiente obtener unas calificaciones mínimas (ver art. 7.2 de la Normativa de evaluación de la UGR) en el apartado de pruebas teórico-prácticas (60% de la calificación final). Estos mínimos son los siguientes:

- Obtener una calificación superior a 2/10 en cada uno de los tres bloques, de forma independiente.
- Obtener una media aritmética entre los tres bloques superior a 4/10 puntos.

Sólo en caso de que estos mínimos se superen, se sumarán el resto de calificaciones del sistema de evaluación por curso.

En caso de no superar la asignatura debido a las calificaciones mínimas para el bloque de pruebas teórico-prácticas, se establecerá una calificación numérica basada en el porcentaje de actividades realizadas hasta el momento de obtener dicha calificación, no superándose en ningún caso los 5 puntos (se limitará a 4.5 puntos).

Los estudiantes están obligados a actuar en todas las pruebas de evaluación de acuerdo con los principios de mérito individual y autenticidad del ejercicio. Cualquier actuación contraria en ese sentido dará lugar a la calificación numérica de cero (artículo 15 de la Normativa de Exámenes de la UGR). En consecuencia, la detección de una acción fraudulenta (copia o plagio) tanto en el examen como en cualquier actividad individual (tests y cuestionarios) que se proponga supondrá una calificación final de cero.

DESCRIPCIÓN DE LAS PRUEBAS QUE FORMARÁN PARTE DE LA EVALUACIÓN ÚNICA FINAL ESTABLECIDA EN LA "NORMATIVA DE EVALUACIÓN Y DE CALIFICACIÓN DE LOS ESTUDIANTES DE LA UNIVERSIDAD DE GRANADA"

El formato de examen de Evaluación Única Final será el mismo que el de las pruebas extraordinarias (prueba única, sin guardar partes). Consistirá en un examen teórico-práctico con 3 bloques.

- BLOQUE I: Partes I-II-III-IV: 1/3 de la calificación.
- BLOQUE II: Parte V, Estática: 1/3 de la calificación.
- BLOQUE III: Parte VI, Dinámica: 1/3 de la calificación.

INFORMACIÓN SOBRE TITULACIONES DE LA UGR grados.ugr.es

Firmado por: DAVID LOPEZ MARTIN Secretario/a de Departamento

Sello de tiempo: 04/07/2017 19:35:05 Página: 12 / 13

/SqOe9nzLo8jw1vcSm/tJ35CKCJ3NmbA

Este examen se calificará sobre 10 puntos, y para superar el examen se requiere:

- Una calificación mínima en cada parte igual o superior a 3 puntos. La no superación de al menos una de ellas supondrá no superar la asignatura.
- La media aritmética entre las tres partes debe ser igual o superior a 5 puntos.

En caso de no superar la asignatura debido a tener una calificación inferior a 3 puntos en alguna de las partes, la calificación que quedará será la media, limitada a 4.5 puntos en caso de que dicha media superase los 5 puntos.

Este formato de examen será también el que se utilizará para las pruebas de evaluación única final. El o los exámenes extraordinarios tendrán carácter de prueba única, no guardándose calificaciones o partes de otros exámenes, tanto de evaluación continua, como de evaluación única final (ordinarios o extraordinarios).

INFORMACIÓN ADICIONAL

Régimen de Asistencia:

La asistencia a todas las clases tanto teóricas como prácticas es recomendable. El alumnado debe tener en cuenta que en el desarrollo de las clases se realizarán actividades que computan en la evaluación continua.

INFORMACIÓN SOBRE TITULACIONES DE LA UGR grados.ugr.es

Firmado por: DAVID LOPEZ MARTIN Secretario/a de Departamento

Sello de tiempo: 04/07/2017 19:35:05 Página: 13 / 13

/SqOe9nzLo8jw1vcSm/tJ35CKCJ3NmbA