Guía docente de Cálculo (2461111)

Curso 2025/2026
Fecha de aprobación: 27/06/2025

Grado

Grado en Ingeniería Civil (Plan 2023)

Rama

Ingeniería y Arquitectura

Módulo

Materias Básicas

Materia

Matemáticas

Year of study

1

Semestre

1

ECTS Credits

6

Tipo

Troncal

Profesorado

Teórico

  • Gerardo Martín Escolano. Grupo: C
  • Juan Francisco Mena Jurado. Grupo: C
  • Eduardo Antonio Nieto Arco. Grupo: B
  • Salvador Villegas Barranco. Grupo: A

Práctico

  • Gerardo Martín Escolano Grupo: 5
  • Salvador Villegas Barranco Grupos: 1 y 2

Tutorías

Gerardo Martín Escolano

Email
No hay tutorías asignadas para el curso académico.

Juan Francisco Mena Jurado

Email
No hay tutorías asignadas para el curso académico.

Eduardo Antonio Nieto Arco

Email
No hay tutorías asignadas para el curso académico.

Salvador Villegas Barranco

Email
No hay tutorías asignadas para el curso académico.

Prerrequisitos y/o Recomendaciones

Se recomienda tener cursadas las asignaturas de matemáticas de bachillerato.

Breve descripción de contenidos (Según memoria de verificación del Máster)

Cálculo diferencial e integral en una y varias variables.

Resultados de aprendizaje (Objetivos)

Programa de contenidos Teóricos y Prácticos

Teórico

  • Tema 1. Conceptos generales. La recta real y el plano complejo. Sucesiones. Funciones elementales.
  • Tema 2. Límites y continuidad de funciones de una variable.
  • Tema 3. Derivada de funciones de una variable. Extremos relativos y absolutos. Optimización. Fórmula de Taylor.
  • Tema 4. Series. Series de potencias.
  • Tema 5: Integración. Área e integral. Cálculo de primitivas.
  • Tema 6: El espacio Euclídeo.
  • Tema 7: Diferenciabilidad de funciones de varias variables. Límites y continuidad. Derivadas parciales y direccionales. Gradiente. Interpretación geométrica. Derivadas de orden superior. Extremos relativos, condicionados y absolutos.
  • Tema 8: Integración de funciones de varias variables. Teorema de Fubini. Cambio de variable. Aplicaciones.

Práctico

Los contenidos prácticos se acompasarán a los desarrollos teóricos de la asignatura y serán fundamentalmente sesiones de resolución de ejercicios.

Bibliografía

Bibliografía fundamental

  • Ayres-Mendelson, Cálculo diferencial e integral, McGraw-Hill, 1990.
  • Bradley-Smith, Cálculo de una variable (Tomo 1), Prentice Hall, 1998
  • Bradley-Smith, Cálculo de varias variables (Tomo 2), Prentice Hall, 1998
  • Stewart, Cálculo diferencial e integral, Internacional Thomson Editores, 1998
  • Juan de Burgos. Cálculo infiinitésimal de varias variables. McGraw-Hill, 1995.
  • Marsden-Tromba. Cálculo Vectorial. Addison-Wesley Iberoamericana, 1991.
  • Stewart, Cálculo multivariable, Internacional Thomson Editores, 1999
  • Thomas-Finley, Cálculo (una variable), Addison-Wesley Longman, 1998.
  • Thomas-Finley, Calculus con Geometría Analítica (2 volúmenes), Addison-Wesley Iberoamericana, 1987

Bibliografía complementaria

Cálculo. Apuntes Departamento de Análisis Matemático. J. Alaminos. 2016.

Enlaces recomendados

  • Materiales de apoyo a la docencia (Departamento de Análisis Matemático UGR).

https://analisismatematico.ugr.es/pages/docencia/materiales

  • Material docente del profesorado en la plataforma Prado de la UGR.

Evaluación (instrumentos de evaluación, criterios de evaluación y porcentaje sobre la calificación final)

Evaluación Ordinaria

Evaluación ordinaria

Con carácter general, y aunque la asistencia a clase es voluntaria, se aplicará el sistema de evaluación descrito a continuación.

Para evaluar la adquisición de conocimientos y competencias se usarán los siguientes criterios con la ponderación que se indica:

  • A. Evaluación continua: Participación en clase y realización de una o varias pruebas escritas. Esto supondrá el 30% de la calificación final.
  • B. Prueba-examen final, de carácter obligatorio y presencial, que consistirá en la resolución escrita de ejercicios y cuestiones teóricas básicas. La puntuación de esta prueba representará el 70% de la calificación final.

Evaluación Extraordinaria

La evaluación extraordinaria consistirá en una prueba (examen) con las mismas características de la prueba final de la convocatoria ordinaria, y la puntuación obtenida en ella representará el 100 % de la calificación final.

Evaluación única final

Aquellos estudiantes que siguiendo la Normativa de la UGR en los términos y plazos que en ella se exigen, se acojan a esta modalidad de evaluación, realizarán solamente la prueba-examen final escrita de manera presencial y con las mismas características de la prueba final de la convocatoria ordinaria. La puntuación obtenida en ella representará el 100% de la calificación final.

Información adicional

Cuando el estudiante entregue el examen en alguna de las pruebas-exámenes finales de la asignatura figurará en el acta con la calificación correspondiente.

Todo lo relativo a la evaluación (tanto en las convocatorias ordinaria, extraordinaria o la evaluación única final) se regirá por la Normativa de evaluación y calificación de los estudiantes vigente en la Universidad de Granada, que puede consultarse en: http://www.ugr.es/~mi pet/pages/en pdf/normativa evaluacion y calificacion.pdf