(Fecha última actualización: 7/03/16)

MÓDULO	MATERIA	CURSO	SEMESTRE	CRÉDITOS	TIPO
MATERIAS BÁSICAS INSTRUMENTALES PARA LA BIOLOGÍA	MATEMÁTICAS	1°	1°	6	Básica

Coordinador de la asignatura:

Aureliano M. Robles Pérez (arobles@ugr.es)

PROFESORADO DE TEORÍA	DIRECCIÓN COMPLETA DE CONTACTO PARA TUTORÍAS (Dirección postal, teléfono, correo electrónico, etc.)		
Grupo A: Juan Campos Rodríguez (campos@ugr.es) Grupo B: Jerónimo Lorente Pardo (lorente@ugr.es) Grupo C: Aureliano M. Robles Pérez (arobles@ugr.es) Grupo D: Antonio J. Ureña Alcázar (ajurena@ugr.es)	Dpto. Matemática Aplicada, sección de Matemáticas, Facultad de Ciencias. Correos electrónicos: campos@ugr.es lorente@ugr.es arobles@ugr.es ajurena@ugr.es Información adicional (número de despacho, horario de tutorías, etc.): https://www.ugr.es/~mateapli/		
GRADO EN EL QUE SE IMPARTE	OTROS GRADOS A LOS QUE SE PODRÍA OFERTAR		
Grado en BIOLOGÍA			

PRERREQUISITOS Y/O RECOMENDACIONES (si procede)

Se recomienda haber cursado Matemáticas en bachillerato.

BREVE DESCRIPCIÓN DE CONTENIDOS (SEGÚN MEMORIA DE VERIFICACIÓN DEL GRADO)

- Modelos discretos en Biología.
- Modelos matriciales discretos en Biología.
 Derivación mediante tablas. Interpretación geométrica. Interpretación en la Biología.
- Ecuaciones diferenciales.
- Identificación de las soluciones de una ecuación diferencial ordinaria.
- Sistemas de ecuaciones diferenciales: modelos de relación entre especies.

- Estimación de parámetros.

COMPETENCIAS GENERALES Y ESPECÍFICAS

Generales

- CG 1. Capacidad de organización y planificación
- CG 3. Aplicar los conocimientos a la resolución de problemas
- CG 4. Capacidad de análisis y síntesis
- CG 6. Razonamiento critico
- CG 16. Creatividad
- CG 17. Capacidad de gestión de la información

Específicas

CE 39. Aplicar los procesos y modelos matemáticos necesarios para estudiar los principios organizativos, el modo de funcionamiento y las interacciones del sistema vivo

CE. 76. Matemáticas y estadística aplicadas a la Biología

OBJETIVOS (EXPRESADOS COMO RESULTADOS ESPERABLES DE LA ENSEÑANZA)

Formativos

El principal objetivo es que el alumno entienda las Matemáticas como una herramienta útil en su formación como biólogo. Se hará énfasis en:

- la obtención de información sobre una situación biológica real a partir del modelo matemático y
- la crítica de los resultados obtenidos a partir de los modelos y, en su caso, crítica de los propios modelos.

Destrezas

- Resolución de sistemas de ecuaciones algebraicas lineales.
- Interpretación de las ecuaciones en diferencias y sistemas de ecuaciones en diferencias que aparecen en algunos modelos de la Biología.
- Uso de matrices para el método de Gauss y en modelos discretos.
- Conocimiento cualitativo y cuantitativo de las funciones elementales.
- Manejo de derivadas de funciones.
- Interpretación de las ecuaciones diferenciales ordinarias y de los sistemas de que aparecen en algunos modelos de la Biología.
- Identificación de propiedades de las soluciones de una ecuación diferencial ordinaria y de los sistemas de ecuaciones diferenciales ordinarias a partir de las ecuaciones.
- Reconocimiento de la relación entre especies a partir de un modelo matemático.

TEMARIO DETALLADO DE LA ASIGNATURA

Temario de Teoría

Tema 0. **Revisión de conceptos básicos**. Ecuaciones e inecuaciones. Funciones: derivación, manejo de tablas, esbozo de gráficas. Matrices y sistemas lineales: forma reducida de una matriz y resolución de sistemas.

Tema 1. Modelos discretos de crecimiento de poblaciones. Ecuaciones en diferencias. Puntos fijos, ciclos y estabilidad.

Tema 2. Modelos de crecimiento estructurados por edad. Modelos de estado. Sistemas de ecuaciones en diferencias lineales. Potencias de una matriz. Matrices positivas.

Tema 3. **Modelos continuos de crecimiento de poblaciones.** Ecuaciones diferenciales: exponencial, logística, de Gompertz y de von Bertalanffy. Estudio cualitativo de las soluciones.

Tema 4. **Modelos continuos de relación entre especies.** Sistemas de ecuaciones diferenciales. Puntos de equilibrio y órbitas. Retrato de fases. Estabilidad.

Tema 5. Estimación de parámetros. Método de mínimos cuadrados. Casos lineal y no lineal. Linealización.

Temario de Prácticas

Práctica 1. Modelos discretos de crecimiento de poblaciones.

Práctica 2. Modelos de crecimiento estructurados por edad. Modelos de estado.

Práctica 3. Estimación de parámetros.

Práctica 4. Interacción entre especies.

BIBLIOGRAFÍA

BIBLIOGRAFÍA FUNDAMENTAL:

- H. Anton. Introducción al álgebra lineal. Editorial Limusa, 1990.
- C. Rorres, H. Anton. Aplicaciones de álgebra lineal. Editorial Limusa, 1979.
- D.G. Zill. Ecuaciones diferenciales con aplicaciones. Editorial Iberoamérica, 1988.

BIBLIOGRAFÍA COMPLEMENTARIA:

- M. Kot. Elements of Mathematical Ecology. Cambridge University Press, 2001.
- J.D. Murray. Mathematical Biology I: An Intoduction (3rd Edition). Springer, 2002.
- J.D. Murray. Mathematical Biology II: Spatial Models and Biomedical Applications. (3rd Edition). Springer, 2003.
- J. Rodríguez. Ecología. Ediciones Pirámide, 2001.
- H.R. Thieme. Mathematics in Population Biology. Princenton University Press, 2003.
- E. Yeargers, R. Shonkwiler, J. Herod. An introduction to the mathematics of Biology. Birkhauser, 1996.

METODOLOGÍA DOCENTE

Se seguirá una metodología mixta, que combinará teoría y práctica, para lograr un aprendizaje, basado en la adquisición de competencias, que garantice un aprendizaje cooperativo y colaborativo. Las actividades formativas comprenderán:

- Clases teóricas y de resolución de problemas (1.6 ECTS/40 horas)

Se expondrán claramente los objetivos principales del tema y se desarrollarán en detalle los contenidos necesarios para una correcta comprensión de los conocimientos.

- Seminarios y clases de prácticas (0.6 ECTS/15 horas)

En estas actividades se proporcionarán temas de análisis (estableciendo los procedimientos de búsqueda de información, análisis y síntesis de conocimientos) o plantearán problemas concretos que se desarrollarán de forma individual o grupal. Para la realización de esta parte se hará uso del ordenador.

- Tutorías dirigidas y evaluación (0.2 ECTS/5 horas)

Se ofrecerá apoyo y asesoramiento personalizado, o en grupos con un pequeño número de estudiantes, para abordar las tareas encomendadas en las actividades formativas indicadas previamente o específicas del trabajo personal. El profesor jugará un papel pre-activo, orientando hacia un aprendizaje colaborativo y cooperativo, a lo largo de todo el curso. Además se realizarán pruebas de evaluación con las que acreditar el proceso de aprendizaje de los estudiantes.

- Trabajo individual (3.6 ECTS/90 horas)

En esta actividad el estudiante se centrará en la preparación de las sesiones de discusión, elaboración de un cuaderno de notas o informe de prácticas de laboratorio, además de la búsqueda bibliográfica y preparación de casos prácticos. Todo ello acompañado del estudio que permita una adecuada asimilación de los conocimientos recibidos.

PROGRAMA DE ACTIVIDADES

El programa de actividades de clases teóricas, prácticas, seminarios /talleres puede ser consultado en:

- Web del Grado en Biología. http://grados.ugr.es/biologia/pages/infoacademica/horarios
- Plataforma SWAD: https://swad.ugr.es (aquí se encontrará la información más actualizada sobre la asignatura, así como el material docente, calificaciones, etc.).

REGIMEN DE ASISTENCIA

La asistencia a las clases teóricas y prácticas es voluntaria, pero será tenida en cuenta y evaluada como se indica en la evaluación continua.

EVALUACIÓN (INSTRUMENTOS DE EVALUACIÓN, CRITERIOS DE EVALUACIÓN Y PORCENTAJE SOBRE LA CALIFICACIÓN FINAL, ETC.)

Convocatoria ordinaria de junio

- A) La evaluación continua se realizará en base a:
 - 1. Evaluación de la participación del alumno en clase y de controles teórico-prácticos (N1): hasta un 15 % de la calificación. Se valorará la participación del alumno en clase, así como la realización de controles teórico-prácticos en el horario de clase, que se avisarán con suficiente antelación.
 - 2. Evaluación de las prácticas (N2): 25 % de la calificación. Se valorará la asistencia a las prácticas con un máximo de 2 puntos. Los 8 puntos restantes hasta alcanzar la puntuación máxima podrán obtenerse con la realización de trabajos prácticos tutelados, que eventualmente se expondrán en clase de forma individual o en grupo.
 - 3. Prueba final de conocimientos teóricos y resolución de problemas (N3): hasta un 75 % de la calificación.

La calificación final se obtendrá mediante la fórmula: N = 0.15 * N1 + 0.25 * N2 + (0.75 - 0.015 * N1) * N3

- B) Evaluación final única. El alumno que se acoja al sistema de evaluación única contemplada en la "Normativa de evaluación y de calificación de los estudiantes de la Universidad de Granada (Aprobada por Consejo de Gobierno en su sesión extraordinaria de 20 de mayo de 2013, ver: http://secretariageneral.ugr.es/bougr/pages/bougr71/ncg712/)" será evaluado de la siguiente forma:
 - 1. Evaluación de los contenidos teóricos (N1): 75 % de la calificación.- Se realizará una prueba escrita, de los contenidos del temario de teoría, que incluirá la resolución de problemas.
 - 2. Evaluación de los contenidos de prácticas (N2): 25 % de la calificación.- Se realizará una prueba, con ordenador, de los contenidos del temario de prácticas.

La calificación final se obtendrá mediante la fórmula: N = 0.75 * N1 + 0.25 * N2

Convocatoria extraordinaria de septiembre

Se seguirá el mismo criterio de evaluación que el expuesto en la Evaluación final única de la Convocatoria ordinaria de junio.

Observaciones

- 1. **N1,N2,N3** son valores entre 0 y 10.
- 2. La asignatura se considera superada si $N \ge 5$.

El calendario de exámenes ordinarios y extraordinarios del curso académico 2015-16 puede ser consultado en el siguiente enlace:

http://grados.ugr.es/biologia/pages/infoacademica/convocatorias

