Course guide of General Relativity (26711C1)
Curso
2024/2025
Approval date:
11/06/2024
Grado (bachelor's degree)
Bachelor'S Degree in Physics
Branch
Sciences
Module
Relatividad y Teoría de Campos y Partículas
Subject
Relatividad General
Year of study
4
Semester
1
ECTS Credits
6
Course type
Elective course
Teaching staff
Theory
- Bert Janssen . Grupo: B
- Javier Antonio Olmedo Nieto. Grupo: A
Practice
- Mar Bastero Gil Grupo: 1
- Bert Janssen Grupo: 2
Timetable for tutorials
Bert Janssen
Email- Monday de 10:00 a 12:00 (Despacho 21)
- Tuesday de 10:00 a 12:00 (Despacho 21)
- Friday de 11:00 a 13:00 (Despacho 21)
Javier Antonio Olmedo Nieto
Email- Monday de 10:00 a 13:00 (Despacho 19)
- Wednesday de 10:00 a 13:00 (Despacho 19)
Mar Bastero Gil
Email- Tuesday de 11:00 a 13:00 (Despacho 23)
- Wednesday de 16:00 a 18:00 (Despacho 23)
- Thursday de 16:00 a 18:00 (Despacho 23)
Prerequisites of recommendations
- Métodos Matemáticos I, II, III
- Análisis matemático I, II
- Álgebra lineal y Geometría
- Mecánica y Ondas
- Electromagnetismo
Brief description of content (According to official validation report)
- Review of Special Relativity
- Bases of Differential Geometry
- Einstein equations
- Classical Tests of General Relativity
- Exact solutions: black holes, gravitational waves and cosmological models
General and specific competences
General competences
- CG01. Skills for analysis and synthesis
- CG02. Organisational and planification skills
- CG05. Skills for dealing with information
- CG06. Problem solving skills
- CG08. Critical thinking
- CG09. Autonomous learning skills
Specific competences
- CE01. Knowing and understanding the phenomena of the most important physical theories
- CE02. Estimating the order of magnitud in order to interpret various phenomena
- CE03. Knowing and understanding the mathematical methods necessary to describe physical phenomena
- CE05. Modelling complex phenomena, translating a physical problem into mathematical language
- CE09. Applying mathematical knowlegde in the general context of Physics
Objectives (Expressed as expected learning outcomes)
- Knowledge of General Relativity as the modern theory of gravity
- Comprehend the importance of symmetries in Physics and being able to apply them
- Notions of geometry in curved space
- Knowledge of the Einstein equations and its implications
- Knowledge of black holes, gravitational waves and cosmological models
Detailed syllabus
Theory
- Special Relativity - Lorentz transformations
- Minkowski space; four-vectors; Lorentz group
- Relativistic mechanics and electromagnetism in covariant formulation
- Manifolds and general coordinate transformations
- Tensor calculus; affine connections; covariant derivative
- Curvature tensors; geodesics
- The Equivalence Principle
- The energy-momentum tensor
- The Einstein Equations
- Physics in curved space
- Classical tests of General Relativity
- Schwarzschild black hole: causal structure and interpretation
- Gravitational waves: linearised theory; gravitational waves as perturbations; detection
- Cosmological models: FWR metrics; cosmological solutions
Practice
- Problems and exercises of the theory
- Asistence in specialised seminars
Bibliography
Basic reading list
- Bert Janssen, Teoría de la Relatividad General, Universidad de Granada, 2020
- Bert Janssen, Gravitación y Geometría, Editorial Universidad de Granada, 2021.
- R. D'Inverno, Introducing Einstein's Relativity, Oxford University Press, 1992.
- S. Carroll, Spacetime and Geometry, Addison-Wesley, 2004.
- S. Weinberg, Gravitation and cosmology, Wiley, 1972.
Complementary reading
- C. Misner, K. Thorn, A. Wheeler, Gravitation, Freeman, 1973
- R. Wald, General Relativity, Chicago University Press, 1984.
- H. Stefani, General Relativity, Cambridge University Press, 1982.
- B.F. Schutz, A first course in General Relativity, Cambridge University Press, 1985.
- J. Hartle, Gravity, Addison-Wesley, 2003.
- E. Poisson, A relativist's Toolkit, Cambridge University Press, 2004.
- T.P. Cheng, Relativity, Gravitation and Cosmology, Oxford University Press, 200
Recommended links
Teaching methods
- MD01. Theoretical classes
Assessment methods (Instruments, criteria and percentages)
Ordinary assessment session
Continuous evaluation:
- Exercises to be handed in & tests (30%)
- Final exam (70%).
In order to succed for this course, the student must obtain at least 50% of the score of the final exam.
Extraordinary assessment session
The extraordinary assessment session will consist of the same tests as the Unique Final Evaluation. The student will have the oportunity to obain 100% of the score.
Single final assessment
Final exam (100%)
Additional information
Información de interés para estudiantado con discapacidad y/o Necesidades Específicas de Apoyo Educativo (NEAE): Gestión de servicios y apoyos (https://ve.ugr.es/servicios/atencion-social/estudiantes-con-discapacidad).