# GUIA DOCENTE DE LA ASIGNATURA FÍSICA II (2016-2017)

| MÓDULO                                                                                            | MATERIA                  | CURSO                                                                                                                                                                                                         | SEMESTRE                                    | CRÉDITOS | TIPO   |  |  |
|---------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------|--------|--|--|
| Formación Básica                                                                                  | Física II                | 2º                                                                                                                                                                                                            | 1º                                          | 6        | Básica |  |  |
| PROFESORES<br>Simon Verley<br>Almudena Zurita<br>Amelia Rubio Bretones<br>Luis Manuel Díaz Angulo |                          | DIRECCIÓN COMPLETA DE CONTACTO PARA TUTORÍAS simon@ugr.es 958 24 17 22 azurita@ugr.es 958 24 27 46 arubio@ugr.es 958 24 32 22 lm@diazangulo.com                                                               |                                             |          |        |  |  |
| • Área de Flec                                                                                    | tromagnetismo (AE)       | Dpto. Física Teórica y del Cosmos. Edificio Mecenas, planta baja. Despacho 8, despacho 14. Dpto. Electromagnetismo y Física de la Materia, 2º planta de Físicas, Facultad de Ciencias. Despacho nº 104B y 110 |                                             |          |        |  |  |
| _                                                                                                 | onomía y Astrofísica (Az | HORARIO DE TUTORÍAS                                                                                                                                                                                           |                                             |          |        |  |  |
|                                                                                                   |                          | AA: Simon: X 9:00-13:00, J 9:00-11:00 AA: Almudena: M 10:00-12, 16:00-17:00                                                                                                                                   |                                             |          |        |  |  |
| GRADO EN EL QUE SE IMPARTE                                                                        |                          |                                                                                                                                                                                                               | OTROS GRADOS A LOS QUE SE PODRÍA<br>OFERTAR |          |        |  |  |
| Grado en Ingeniería Q                                                                             | uímica.                  | Física, Química, Ciencias Ambientales, Ing.<br>Electrónica.                                                                                                                                                   |                                             |          |        |  |  |
|                                                                                                   |                          |                                                                                                                                                                                                               |                                             |          |        |  |  |

# PRERREQUISITOS Y/O RECOMENDACIONES (si procede)

Tener cursadas las asignaturas

- Física (20 de Bachillerato).
- Matemáticas (20 de Bachillerato).
- Curso 0.

Tener conocimientos adecuados sobre:

- Cálculo integro-diferencial.
- Álgebra vectorial vectorial.



# BREVE DESCRIPCIÓN DE CONTENIDOS (SEGÚN MEMORIA DE VERIFICACIÓN DEL GRADO)

Campo y potencial eléctricos. Conductores y dieléctricos. Campo magnético y materiales magnéticos. Inducción magnética. Circuitos de corriente continuo y alterna. Ondas electromagnéticas. Óptica geométrica. Óptica ondulatoria.

#### COMPETENCIAS GENERALES Y ESPECÍFICAS

#### **COMPETENCIAS GENERALES**

- CG01: Poseer y comprender los conocimientos fundamentales en materias básicas y tecnológicas, que les capacite para el aprendizaje de nuevos métodos y teorías, y les dote de versatilidad para adaptarse a nuevas situaciones.
- CG02: Saber aplicar los conocimientos de Ingeniería Química al mundo profesional, incluyendo la capacidad de resolución de cuestiones y problemas con iniciativa, toma de decisiones, creatividad y razonamiento crítico.
- CG03: Adquirir la capacidad de reunir e interpretar datos relevantes dentro del área de la Ingeniería Química, así como de extraer conclusiones y reflexionar críticamente sobre las mismas.
- CG04: Saber transmitir de forma oral y escrita información, ideas, problemas y soluciones relacionados con la Ingeniería Química, a un público tanto especializado como no especializado.
- CG08: Trabajo en equipo.
- CG09: Compromiso ético.
- CG10: Capacidad de aplicar los conocimientos en la práctica.
- CB1: Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria
- CB2: Comprensión y dominio de los conceptos básicos sobre las leyes generales de la mecánica, termodinámica, campos y ondas y electromagnetismo y su aplicación para la resolución de problemas propios de la ingeniería.
- CB3: Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio.
- CB4: Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado.

#### **COMPETENCIAS ESPECÍFICAS**

• CE2: Comprensión y dominio de los conceptos básicos sobre las leyes generales de la mecánica, termodinámica, campos y ondas y electromagnetismo y su aplicación para la resolución de problemas propios de la ingeniería.

# OBJETIVOS (EXPRESADOS COMO RESULTADOS ESPERABLES DE LA ENSEÑANZA)

# El alumno será capaz de:

- Determinar la forma de campos electrostáticos en función de las simetrías de las fuentes de este.
- Comprender el significado físico de los conceptos campo y potencial y manejar con soltura la relación existente entre estos.
- Comprender el funcionamiento del condensador como dispositivo almacenador de energía eléctrica.
- Comprender el proceso de conducción de carga eléctrica y de las leyes que la rigen.
- Analizar los efectos de campos magnéticos sobre cargas en movimiento y corrientes eléctricas.
- Determinar campos magnéticos en función de sus fuentes.
- Analizar circuitos de corriente alterna y calcular parámetros de interés en ingeniería.
- Familiarización con los fenómenos ondulatorios y sus propiedades.
- Comprender los fenómenos de reflexión y refracción.
- Comprender los fenómenos de interferencia, difracción y polarización y sus aplicaciones.



• Aprender las técnicas para diseñar un experimento y realizar las medidas oportunas y su correspondiente análisis.

#### TEMARIO DETALLADO DE LA ASIGNATURA

# 1. Electricidad

# 1.1. Electrostática. Campo eléctrico

Carga eléctrica: conservación de la carga. Conductores y aislantes. Ley de Coulomb. El campo eléctrico: líneas de campo. Cargas y dipolos en un campo eléctrico. Campos eléctricos para distribuciones continuas de carga. Ley de Gauss. Carga y campo en la superficie de un conductor.

#### 1.2. Potencial eléctrico

Potencial eléctrico. Relación entre el campo y el potencial eléctricos. Potencial para distribuciones continuas de carga. Superficies equipotenciales: ruptura dieléctrica.

# 1.3. Capacidad y condensadores

Capacidad: condensadores. Cálculo de la capacidad en condensadores. Almacenamiento de energía eléctrica. Agrupaciones de condensadores. Dieléctricos.

# 1.4. Corriente eléctrica

Corriente eléctrica. Resistencia: ley de Ohm. Potencia eléctrica. Fuerza electromotriz. Agrupaciones de resistencias. Leyes de Kirchhoff. Circuitos RC. Instrumentos de medida. Circuitos eléctricos de corriente alterna. Generadores y motores eléctricos. Corriente alterna en una resistencia. C.A. en una inducción: reactancia inductiva. C.A. en un condensador: reactancia capacitiva. Circuitos LC y LCR sin generador. Circuitos LCR con generador: resonancia.

# 2. Magnetismo

# 2.1. El campo magnético

Fuerzas magnéticas. Movimiento de una carga en un campo magnético: ejemplos. Fuerza sobre una corriente eléctrica. Momento de fuerzas sobre una espira. El efecto Hall.

# 2.2. Fuentes del campo magnético

Campo magnético creado por una carga puntual en movimiento. Ley de Biot-Savart. Fuerza entre conductores paralelos. Ley de Gauss para el magnetismo: ley de Ampère. Campo magnético en solenoides y toroides. Materiales magnéticos: ferromagnetismo. Paramagnetismo y diamagnetismo.

# 2.3. Inducción magnética

Ley de inducción de Faraday: ley de Lenz. Corrientes de Foucault. Ejemplos de inducción. Inducción mutua y autoinducción. Energía magnética: circuitos RL.

# 3. Óptica

# 3.1. Ondas y naturaleza de la luz

Ondas. Características de una onda. Tipos de onda: Ondas longitudinales y transversales. Ecuación de ondas y su solución: Ondas electromagnéticas. Ondas planas y esféricas. Energía e intensidad de las ondas. Absorción. Principio de superposición de ondas. Ondas estacionarias. La luz como onda electromagnética. Espectro electromagnético. Velocidad de la luz.

# 3.2. Óptica geométrica

Propagación de la luz, reflexión y refracción. Prisma óptico. Dioptrio esférico. Espejos. Sistemas



ópticos. El ojo humano.

# 3.3. Óptica ondulatoria

Coherencia. Interferencia. Experimento de la doble rendija de Young. Interferencia en películas delgadas. Aplicaciones. Interferómetros. Difracción. Red de difracción. Espectrógrafo. Polarización de la luz. Tipos de polarización: lineal, circular y elíptica. Mecanismos de polarización de la luz.

# **TEMARIO PRÁCTICO:**

4 prácticas de laboratorio de entre las siguientes:

- 1. Carga y descarga de un condensador.
- 2. Ley de Ohm. Circuitos de corriente continua.
- 3. Campos magnéticos.
- 4. Inducción magnética.
- 5. Permitividad eléctrica.
- 6. Óptica geométrica.
- 7. Difracción.
- 8. Circuitos de corriente alterna.
- 9. Cubeta de ondas. Interferencia. Ondas estacionarias.
- 10. Prácticas mediante QUCS (Quasi universal circuit solver).

#### **BIBLIOGRAFÍA**

#### **BIBLIOGRAFÍA FUNDAMENTAL:**

- Física para ciencias e ingeniería. (vol. I y II), Serway & Jewett. Ed. Thomson Paraninfo., 2003
- Física para la ciencia y la tecnología (vol I y II). Tipler, P.A., & Mosca, G., Ed. Reverté, 2005
- Física Universitaria. F.W. Sears, M. Zemansky, H. D. Young y R. A. Freedman. Ed. Pearson Addison Wesley, 1998
- Electricidad y Magnetismo: Estrategias en la solución de problemas. Serrano, V.; Ed. Mexicana, S. A., 2001.
- Física (vol I y II). Resnick, Halliday, Krane. C.E.C.S.A. 2003
- Física (Vol. I y II). Raymond A. Serway. McGraw-Hill, 1997
- Física para Universitarios (Vol. I y II). Douglas G. Giancoli, Pearson Educación 2002
- Fisica Clasica y Moderna. W. E. Gettys, F. J. Keller, M. S. Skove: Fisica Clasica y Moderna. McGraw-Hill, 1991.
- Problemas de Física General. S. Burbano de Ercilla, E. Burbano de Ercilla y C. Gracia Muñoz. Ed. Mira
- Física General, S. Burbano de Ercilla, E. Burbano de Ercilla y C. Gracia Muñoz. Ed. Tébar.

# **BIBLIOGRAFÍA COMPLEMENTARIA:**

- Isaac Asimov, Introducción a la Ciencia. I Ciencias Físicas. Editorial Orbis, 1985
- Richard Feynman, El carácter de la ley física. Editorial Orbis, 1987
- Ramón y Cajal, Reglas y consejos sobre investigación científica (los tónicos de la voluntad).
- Bernardo García Olmedo, Fundamentos de Electromagnetismo, Universidad de Granada 2005.
- Rafael Gómez Martín, "Campo Electromagnético: Propagación y Radiación", Universidad de Granada 1984.

# **ENLACES RECOMENDADOS**



- Curso interactivo de Física en Internet: <a href="http://www.sc.ehu.es/sbweb/fisica/">http://www.sc.ehu.es/sbweb/fisica/</a>
- Lista de videos didácticos sobre Electricidad y Magnetismo: <a href="https://www.youtube.com/playlist?list=PL-SAbPKia2YMFi-t8z5WFYCd86Plcs1Un">https://www.youtube.com/playlist?list=PL-SAbPKia2YMFi-t8z5WFYCd86Plcs1Un</a>
- Curso de electricidad y magnetismo del MIT. <a href="https://www.youtube.com/playlist?list=PLUdYlQf0">https://www.youtube.com/playlist?list=PLUdYlQf0</a> sSsfcNOPSNPQKHDhSjTJATPu
- Grupo de electromagnetismo de Granada: http://geg.ugr.es

#### METODOLOGÍA DOCENTE

- Lección magistral/expositiva.
- Resolución de problemas y estudio de casos prácticos o visitas a industrias.
- Prácticas de laboratorio o de campo
- Realización de trabajos o informes de prácticas.



|                |                      | Actividades presenciales                 |                                  |                      | Actividades no presenciales                                                                               |                                                          |  |
|----------------|----------------------|------------------------------------------|----------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--|
|                | Temas del<br>temario | Sesiones<br>teoría/proble<br>mas (horas) | Sesiones<br>prácticas<br>(horas) | Exámenes (horas)     | Tutorías<br>individuales<br>(horas)                                                                       | Estudio y<br>trabajo<br>individual del<br>alumno (horas) |  |
| Semana<br>1    | 1                    | 2/1                                      | 0                                |                      | A criterio del alumno hasta cubrir las <u>60</u> horas/cuatrimestre no presenciales del plan de estudios. |                                                          |  |
| Semana<br>2    | 1                    | 2/1                                      | 0                                |                      |                                                                                                           |                                                          |  |
| Semana<br>3    | 2                    | 2/1                                      | 0                                |                      |                                                                                                           |                                                          |  |
| Semana<br>4    | 3                    | 2/1                                      | 0                                |                      |                                                                                                           |                                                          |  |
| Semana<br>5    | 4                    | 2/1                                      | 2                                |                      |                                                                                                           |                                                          |  |
| Semana<br>6    | 5                    | 2/1                                      | 2                                |                      |                                                                                                           |                                                          |  |
| Semana<br>7    | 6                    | 2/1                                      | 2                                |                      |                                                                                                           |                                                          |  |
| Semana<br>8    | 7                    | 2/1                                      | 2                                |                      |                                                                                                           |                                                          |  |
| Semana<br>9    | 8                    | 2/1                                      | 2                                |                      |                                                                                                           |                                                          |  |
| Semana<br>10   | 9                    | 2/1                                      | 0                                | Ex. Prácticas. (2h)  |                                                                                                           |                                                          |  |
| Semana<br>11   | 10                   | 2/1                                      | 0                                |                      |                                                                                                           |                                                          |  |
| Semana<br>12   | 11                   | 2/1                                      | 0                                |                      |                                                                                                           |                                                          |  |
| Semana<br>13   | 12                   | 2/1                                      | 0                                |                      |                                                                                                           |                                                          |  |
| Semana<br>14   | 12                   | 2/1                                      | 0                                |                      |                                                                                                           |                                                          |  |
| Semana<br>15   | 13                   | 2/1                                      | 0                                | 3 (Teoría/problemas) |                                                                                                           |                                                          |  |
| Total<br>horas |                      | 30/15                                    | 10                               | 5                    |                                                                                                           |                                                          |  |



# EVALUACIÓN (INSTRUMENTOS DE EVALUACIÓN, CRITERIOS DE EVALUACIÓN Y PORCENTAJE SOBRE LA CALIFICACIÓN FINAL, ETC.)

- Examen parcial y examen final. Pondera un 70 % de la calificación final. Para hacer media con el resto de los criterios de evaluación, la nota mínima del examen debe ser >4.
- Preguntas y ejercicios de clase: Participación activa en resolución de ejercicios y respuesta a ejercicios de autoevaluación o preguntas planteadas en clase. Seminarios dirigidos: Iniciativa y calidad del trabajo dirigido desarrollado. Pondera un 10 % de la calificación final.
- Prácticas de laboratorio. Habilidades experimentales y capacidad de elaboración de informes científicos.
   Pondera un 20 % de la calificación final. Las prácticas son obligatorias, dos faltas sin preaviso al profesor, conllevan suspenso en las prácticas de laboratorio. Para aprobar la asignatura es necesario aprobar las prácticas.
- Evaluación única final: Aquellos estudiantes que siguiendo la Normativa de la UGR en los Términos y
  plazos que en ella se exigen, se acojan a esta modalidad de evaluación, realizarán un examen teórico
  de conocimientos y resolución de problemas, y un examen de prácticas en el laboratorio con el mismo
  peso indicado anteriormente siendo también indispensable aprobar el examen práctico para aprobar la
  asignatura.
- Para los estudiantes que se acojan a la evaluación única final, esta modalidad de evaluación estará formada por todas aquellas pruebas que el profesor estime oportunas, de forma que se pueda acreditar que el estudiante ha adquirido la totalidad de las competencias generales y específicas descritas en el apartado correspondiente de esta Guía Docente.

| INFORMACION ADICION |  |
|---------------------|--|
|                     |  |
|                     |  |
|                     |  |

