GUIA DOCENTE DE LA ASIGNATURA

NOMBRE DE LA ASIGNATURA

MÓDULO	MATERIA	CURSO	SEMESTRE	CRÉDITOS	TIPO
TERMODINÁMICA Y FÍSICA ESTADÍSTICA	FÍSICA ESTADÍSTICA	3º	2º	6	Obligatoria
PROFESOR(ES)		DIRECCIÓN COMPLETA DE CONTACTO PARA TUTORÍAS (Dirección postal, teléfono, correo electrónico, etc.)			
	ICHO JORDÁ (GRUPO A)	ARTURO MONCHO JORDÁ Dpto. Física Aplicada, 1ª planta (sección de Física), Facultad de Ciencias. Despachos nª 2. Correo electrónico: moncho@ugr.es MIGUEL ÁNGEL MUÑOZ MARTÍNEZ Dpto. Electromagnetismo y Física de la Materia, planta baja (sección de Física), Facultad de Ciencias. Correo electrónico: mamunoz@onsager.ugr.es			
MIGUEL ÁNGE	EL MUÑOZ MARTÍNEZ (GRU	HORARIO DE TUTORÍAS			
		ARTURO MONCHO Lunes, de 16 a 17h Jueves, de 9 a 11h Viernes, de 9 a 12h			
		MIGUEL ÁNGEL MUÑÓZ MARTÍNEZ Martes y Jueves de 11 a 14h			
		OTROS GRADOS A LOS QUE SE PODRÍA OFERTAR			
Grado en FISICA					

PRERREQUISITOS Y/O RECOMENDACIONES (si procede)

Tener cursadas las asignaturas Termodinámica, Métodos Matemáticos de la Física, Mecánica y Ondas y Física Cuántica. Es conveniente un conocimiento previo de Mecánica Analítica.

BREVE DESCRIPCIÓN DE CONTENIDOS (SEGÚN MEMORIA DE VERIFICACIÓN DEL GRADO)

Postulados fundamentales de la Física Estadística. Colectividades de Gibbs. Modelos estadísticos y propiedades termodinámicas de gases, sistemas paramagnéticos y radiación. Gases de Fermi y Bose.

COMPETENCIAS GENERALES Y ESPECÍFICAS

COMPETENCIAS GENERALES

- Capacidad de análisis y síntesis
- Capacidad de organización y planificación
- Comunicación oral y/o escrita
- Resolución de problemas
- Trabajo en equipo
- Razonamiento crítico
- Creatividad
- Conocer y comprender los fenómenos y las teorías físicas más importantes
- Estimar órdenes de magnitud para interpretar fenómenos diversos
- Modelar fenómenos complejos, trasladando un problema físico al lenguaje matemático
- Transmitir conocimientos de forma clara tanto en ámbitos docentes como no docentes
- Aplicar los conocimientos matemáticos en el contexto general de la física
- Utilizar herramientas informáticas para resolver y modelar problemas y para presentar sus resultados

COMPETENCIAS ESPECÍFICAS

- Aplicar los conocimientos adquiridos en Física Estadística a los sistemas macroscópicos en equilibrio, para poder interpretar las propiedades macroscópicas emergentes a partir de las microscópicas.
- Comprender y dominar el uso de los métodos y técnicas matemáticas para extraer información útil de las expresiones básicas de la Física Estadística.
- Evaluar claramente los órdenes de magnitud, de desarrollar una clara percepción de las situaciones que son físicamente diferentes, pero que muestran analogías, por lo tanto permitiendo el uso de soluciones conocidas a nuevos problemas (destreza para la resolución de problemas).
- Iniciarse en nuevos campos a través de estudios independientes (capacidad de aprender)
- Apreciar lo esencial de un proceso/situación y establecer un modelo de trabajo del mismo; el alumno debería de ser capaz de realizar aproximaciones requeridas con el objeto de reducir el problema hasta un nivel manejable; pensamiento crítico para construir modelos físicos (destreza de modelado y de resolución de problemas)

OBJETIVOS (EXPRESADOS COMO RESULTADOS ESPERABLES DE LA ENSEÑANZA)

Los objetivos de la asignatura son:

- Asimilar las características de los niveles de descripción microscópico y macroscópico.
- Comprender en profundidad los fundamentos de la Física Estadística. Utilizar con soltura los conceptos de probabilidad, colectividad y función de partición.
- Conocer las diferentes colectividades estadísticas y sus conexiones con los potenciales termodinámicos.
- Obtener las propiedades termodinámicas de gases y sólidos a partir de modelos microscópicos sencillos clásicos y cuánticos.
- Aprender técnicas computacionales básicas para el estudio y análisis de sistemas de partículas en equilibrio termodinámico, bien mediante prácticas de laboratorio o mediante la realización de trabajos (seminarios).

TEMARIO DETALLADO DE LA ASIGNATURA

• **Lección 1:** Descripción microscópica clásica y cuántica. Macroestado y observables. Teorema de Liouville. Postulados de la Física Estadística. Función densidad clásica y operador densidad cuántico.

Propuestas de seminarios y trabajos en grupo:

- o Sistemas dinámicos y Teoría ergódica.
- o Construcción de las colectividades: Boltzmann.
- o Irreversibilidad: la flecha del tiempo.
- o Física Estadística del no-equilibrio.
- **Lección 2:** Teoría de las colectividades. Colectividad microcanónica. Entropía. Colectividad canónica. Función de partición. Estabilidad. Colectividad macrocanónica.

Propuestas de seminarios y trabajos en grupo:

- o Límite clásico de una colectividad cuántica: indistinguibilidad.
- o Límite termodinámico.
- La estabilidad de la materia.
- **Lección 3:** Fluctuaciones. Fórmula de Einstein. Opalescencia crítica. Equivalencia macroscópica de las colectividades. Introducción a la teoría de los cambios de fase.

Propuestas de seminarios y trabajos en grupo:

- o Teoría de Yang y Lee.
- o Modelo de Ising de 1 y 2 dimensiones.
- o Punto crítico, invariancia de escala, exponentes críticos. Universalidad.
- Lección 4: Sistemas ideales. Gas de Boltzmann. Gas ideal termodinámico.

Propuestas de seminarios y trabajos en grupo:

- o Gas de Takahashi.
- Gas de Kac. Deducción de la ecuación de van der Waals.
- Lección 5: Paramagnetismo. Origen microscópico. Dipolos en campo magnético.

Propuestas de seminarios y trabajos en grupo:

- o Teorema de Bohr-van Leeuven.
- o Temperaturas negativas.
- Lección 6: Gas ideal cuántico. Sistema ideal de bosones o fermiones. Ecuación de estado.
- **Lección 7:** Sistemas fermiónicos. Gas ideal de fermiones degenerado: energía de Fermi. Aplicaciones al estudio del gas electrónico en metales: calores específicos y coeficientes de transporte.

Propuestas de seminarios y trabajos en grupo:

- Átomos pesados: modelo de Thomas-Fermi.
- o Estrellas enanas blancas: modelo de Chandrasekhar.
- o Magnetismo en metales.
- Lección 8: Radiación térmica: Fotones. Física estadística de un gas de fotones. Leyes de Planck y Wien
- Lección 9: Sólidos. Pequeñas oscilaciones. Modos normales. Fonones. Sistemas de osciladores independientes.
 Calores específicos. Ley de Dulong y Petit. Modelo de Debye

Propuestas de seminarios y trabajos en grupo:

o Modelo de Born-Karman.

http://ergodic.ugr.es/statphys/lecciones/Leccion6.ps

- Lección 10: Sistemas Bosónicos: Gas ideal de bosones degenerado. Condensación de Bose-Einstein.
 Propuestas de seminarios y trabajos en grupo:
 - o Superfluidez. Termodinámica del Helio. Diagrama de las fases. Modelo de los dos fluidos.

Otros seminarios:

- o Introducción a la Física Estadística de Líquidos.
- o Superconductividad.
- o Técnicas computacionales de Física Estadística: Dinámica molecular y método Monte Carlo.
- La ecuación de Boltzmann.

Conjuntamente con el temario teórico, se podrá proponer a los alumnos que realicen prácticas o trabajos concretos con una importante componente computacional. En dichos trabajos, los alumnos deberán desarrollar un trabajo de estudio (preferentemente en equipo) de algún sistema de partículas en equilibrio, aplicando las técnicas teóricas aprendidas durante el curso.

BIBLIOGRAFÍA

BIBLIOGRAFÍA FUNDAMENTAL:

Libros de teoría

- 1. PATHRIA, R.K., Statistical Mechanics (2nd edition), Butterworth-Heinemann, Oxford (1996).
- 2. BALESCU, R., Equilibrium and Non-equilibrium Statistical Mechanics, Wiley & Sons, New York (1975).
- 3. McQUARRIE, D.A., Statistical Mechanics, Harper & Row, New York (1976).
- 4. LANDAU L.D. y LIFSHITZ, E.M., Física Estadística, Reverté S.A., Madrid (1975).
- 5. LE BELLAC, M., MORTESSAGNE, F. y BATROUNI, G.G., *Equilibrium and non-equilibrium statistical thermodynamics,* Cambridge University Press, Cambridge (2004).
- 6. BREY ABALO, J.J., DE LA RUBIA PACHECO, J. y DE LA RUBIA SÁNCHEZ, J., Mecánica Estadística, UNED, Madrid (2001).

Libros de problemas

- 1. DALVIT, D.A.R., FRASTAI, J. y LAWRIE, I.D., *Problems on Statistical Mechanics*, Institute of Physics Publishing, Bristol (1999).
- 2. YUNG-KUO, L., *Problems and Solutions on Thermodynamics and Statistical Mechanics*, World Scientific Publishing, Singapur (1990).
- 3. FERNÁNDEZ TEJERO, C. y RODRÍGUEZ PARRONDO, J.M., 100 problemas de Física Estadística, Alianza, Madrid (1996).
- 4. KUBO, R., Statistical Mechanics: an Advanced Course with Problems and solutions, 2ND edition, North-Holland, Amsterdam (1999).

BIBLIOGRAFIA COMPLEMENTARIA:

- 1. VINAY AMBEGAOKAR, *Reasoning About Luck: probability and its uses in physics,* Cambridge University Press (1996).
- 2. DANIEL J. AMIT and YOSEF VERBIN, *Statistical Physics,* World Scientific (1999). ISBN: 981-02-3476-7.
- 3. P. W. ATKINS, The Second Law, W. H. Freeman (1984).
- 4. RALPH BAIERLEIN, Thermal Physics, Cambridge University Press, New York (1999). Hardback: ISBN 0-521-59082-5;

- Paperback: ISBN 0-521-65838-1; Solutions Manual (for instructors): ISBN 0-521-65860-8.
- 5. RALPH BAIERLEIN, Atoms and Information Theory: An Introduction to Statistical Mechanics, Freeman (1971).
- 6. DAVID S. BETTS and ROY E. TURNER, Introductory Statistical Mechanics, Addison-Wesley (1993).
- R. BOWLEY AND M. SANCHEZ, Introductory Statistical Mechanics, second edition, Oxford University Press (2000). ISBN: 0-19-850576-0.
- 8. ANATOLY I. BURSHTEIN, Introduction to Thermodynamics and Kinetic Theory of Matter, Wiley (1996).
- 9. ASHLEY H. CARTER, Classical and Statistical Thermodynamics, Prentice Hall (2001). ISBN: 0-13-779208-5.
- 10. TEUNIS C. DORLAS, Statistical Mechanics, IOP Publishing (1999). ISBN: 0-7503-0540.
- 11. J. S. DUGDALE, Entropy and its Physical Meaning, Taylor & Francis (1996).
- 12. J. B. FENN, Engines, Energy and Entropy, W. H. Freeman (1982).
- 13. C. B. P. FINN, Thermal Physics, second edition, Chapman & Hall (1993).
- 14. ROBERT P. H. GASSER AND W. GRAHAM RICHARDS, Statistical Thermodynamics, World Scientific (1995).
- 15. GARROD, C., Statistical Mechanics and Thermodynamics, Oxford University Press, Nueva York (1995).
- 16. GREINER, W. NEISE, L. y STÖCKER, H., *Thermodynamics and Statistical Mechanics,* Springer-Verlag, Nueva York (1995)
- 17. T. GUENAULT, Statistical Physics, second edition, Chapman & Hall (1995).
- 18. HILL, T.L., An introduction to Statistical Thermodynamics, Addison-Wesley, Massachusetts (1960).
- 19. HUANG, K., Statistical Mechanics 2nd edition, John Wiley & Sons, 1987, Nueva York.
- 20. E. ATLEE JACKSON, Equilibrium Statistical Thermodynamics (1968).
- 21. C. KITTEL AND H. KROEMER, Thermal Physics, second edition, W. H. Freeman (1980).
- 22. F. MANDL, Statistical Physics, second edition, John Wiley & Sons (1988).
- 23. THOMAS A. MOORE, *Six Ideas That Shaped Physics: Unit T: Some Processes Are Irreversible,* WCB/McGraw-Hill Paperback (July 1999). ISBN: 007043056X.
- 24. G. MORANDI, E ERCOLESSI, AND F NAPOLI, *Statistical Mechanics: An Intermediate Course*, 2nd Edition, World-Scientific (2001),
- 25. GEORGE PHILLIES, Elementary Lectures in Statistical Mechanics, Springer-Verlag (2000).
- 26. F. REIF, Fundamentals of Statistical and Thermal Physics, McGraw-Hill (1965).
- 27. F. REIF, Statistical Physics, (Vol. 5 of Berkeley Physics Course), McGraw-Hill (1967).
- 28. W. G. V. ROSSER, An Introduction to Statistical Physics, John Wiley & Sons (1982).
- 29. DANIEL V. SCHROEDER, An Introduction to Thermal Physics, Addison-Wesley (2000).
- 30. F. W. SEARS AND G. L. SALINGER, *Thermodynamics, Kinetic Theory and Statistical Thermodynamics,* Addison-Wesley (1975).
- 31. M. SPRACKLING, Thermal Physics, AIP (1992). ISBN: 0-88318-919-4
- 32. KEITH S. STOWE, Introduction to Statistical Mechanics and Thermodynamics, John Wiley & Sons (1984).
- 33. FERNÁNDEZ TEJERO, C., y BAUS, M., *Física Estadística del equilibrio. Fases de la materia*, Aula documental de investigación. Madrid (2000).
- 34. CHANG L. TIEN, Statistical Thermodynamics, Hemisphere Publications (1985).
- 35. TODA, M., KUBO, R. y SAITO, N., Statistical Physics I. Equilibrium Statistical Mechanics, 2nd edition, Springer-Verlag, Nueva York (1995).
- 36. THOMPSON, C.J., Mathematical Statistical Mechanics, Princeton University Press, New Jersey (1972).
- 37. F. VILLARS AND G. BENEDEK, Physics, Vol. 2: Statistical Physics, Addison-Wesley (1973).

ARTICULOS DE INVESTIGACIÓN (para la preparación de seminarios

- 1. J.G. Kirkwood, Quamtum Statistics of Almost Classical Assemblies. Phys. Rev. 44, 31 (1933).
- 2. Elliot H. Lieb, *The stability of matter*, Rev. of Mod. Phys. 48, 553 (1976).
- 3. C.N. Yang y T.D. Lee, Statistical Theory of Equations of State and Phase Transitions. I. Theory of Condensation. Phys. Rev. 87, 404 (1952).

- 4. T.D. Lee and C.N. Yang, Statistical Theory of Equations of State and Phase Transitions. II. Lattice Gas and Ising Model. Phys. Rev. 87, 410 (1952).
- 5. D.A. Kurtze y M.E. Fisher, Yang-Lee edge singularities at high temperatures. Phys. Rev. B 20, 2785 (1979).
- 6. T.D. Schultz, D.C. Mattis and E.H. Lieb, *Two dimensional Ising Model as a Soluble Problem of Many Fermions*. Rev. of Mod. Physics, 856 July (1964).
- 7. Elliot H. Lieb, *Thomas-fermi and related theories of atoms and molecules*. Rev. of Mod. Physics, **53**, 603 (1981).
- 8. Elliott H. Lieb, *Erratum: Thomas-Fermi and related theories of atoms and molecules*. Rev. of Mod. Physics, **54** 311 (1982).
- R.J. Tayler, Stellar Evolution, Rep. on Progr. in Physics, 31, 167 (1968).
 H.A. Bethe, Supernova Mechanicsms, Rev. of Modern Physics, 62, 801 (1990).
- 10. Corak et al., Atomic Heats of Cooper, Silver, and Gold from 1K to 5K Phys. Rev. 98, 1699 (1955).
- 11. P.C. Hohenberg, Existence of Long Range Order in One and Two Dimensions Phys. Rev. 158, 383 (1967).
- 12. A.Widom, Superfluid Phase Transition in One and Two Dimensions, Phys. Rev. 176, 254 (1968).
- 13. W.E. Lamb and A. Nordsieck, On the Einstein Condensation Phenomenon. Phys. Rev. 59, 677 (1941).
- 14. J. Wilks, The Theory of Liquid He, Rep. on Progr. in Physics 20, 38 (1957).

ENLACES RECOMENDADOS

http://www.sc.ehu.es/sbweb/fisica/

Física con ordenador. Curso Interactivo de Física en Internet.

Página web en castellano donde es posible encontrar un apartado dedicado a la Física Estadística que incluye 10 secciones con sus respectivos contenidos teóricos. Lo más interesante de esta página, sin embargo, radica en la posibilidad de realizar *experimentos virtuales* (aplicaciones Java) donde poder comprobar la veracidad de algunas de las leyes la Física Estadística.

http://stp.clarku.edu/simulations/

En esta página (en inglés) hay una colección de 28 aplicaciones Java sobre Física Estadística. Incluye simulaciones Monte Carlo, simulaciones de Dinámica Molecular, y animaciones y cálculos que ilustran un amplio intervalo de principios y fenómenos físicos (movimiento de partículas, equilibrio, distribución de Boltzman, entropía, fluidos Lennard-Jones, difusión en un sólido,...)

http://serendip/brynmawr.edu/sci_edu/physites.html

Esta página contiene numerosos enlaces a otras páginas dedicadas a la enseñanza de la Física, donde se pueden encontrar notas, aplicaciones Java y curiosidades. Concretamente, existen cuatro enlaces dedicados a la Física Estadística, en los que se estudia la segunda ley de la Termodinámica, el modelo de Ising, la distribución de velocidades de un gas ideal, y el movimiento browniano.

http://www.google.com/alpha/Top/Science/Mathematical_Physics/Statistical_Mechanics/

Desde este sitio web se accede a numerosos enlaces dedicados a la Física Estadística, donde es posible encontrar artículos recientes, lecciones básicas o divulgativas sobre algunos temas y conceptos, tutoriales acerca de caos y otros tópicos, notas de algunos cursos, libros de texto y aplicaciones Java de muy diversas situaciones (movimiento de moléculas, transiciones entre fases,...).

http://ocw.mit.edu/OcwWeb/Physics/index.htm

Lugar donde encontrar cursos de pregrado y de postgrado de Física Estadística. Incluye cursos, notas de clase, problemas resueltos y una lista de los exámenes realizados durante los últimos años con sus soluciones.

METODOLOGÍA DOCENTE

1. Clases teóricas-expositivas:

Descripción: Presentación en el aula de los conceptos fundamentales y desarrollo de los contenidos propuestos.

Propósito: Transmitir los contenidos de las materias del módulo motivando al alumnado a la reflexión, facilitándole el descubrimiento de las relaciones entre diversos conceptos y desarrollar mentalidad crítica

Contenido en ECTS: 40 horas presenciales (1.6 ECTS) Competencias: CT1,CT4,CT5,CT8,CT10,CE1,CE2,CE5

2. Clases de problemas y prácticas de laboratorio:

Descripción: De un conjunto de problemas propuestos por el profesor los alumnos deben de exponer su resolución en clase. También se podrán incluir clases prácticas sobre cómo aplicar métodos de simulación por

Propósito: Fomentar las habilidades analíticas e instrumentales de los estudiantes y el dominio de los conceptos teóricos.

Contenido en ECTS: 15 horas presenciales (0.6 ECTS)

Competencias: CT1,CT2,CT3,CT4,CT5,CT6,CT8,CT9,CT1 0, CE1,CE2,CE5,CE8

3. Seminarios:

Descripción: Se trata de incorporar el debate, la reflexión y el intercambio de ideas.

Propósito: Desarrollo en el alumnado de las competencias cognitivas y procedimentales de la materia.

Contenido en ECTS: 5 horas presenciales (0.2 ECTS)

Competencias: CT1,CT2,CT3,CT4,CT5,CT6,CT8,CT9,CT1 0, CE1,CE2,CE5,CE8

4. Actividades no presenciales individuales (Estudio y trabajo autónomo):

Descripción: 1) Actividades (guiadas y no guiadas) propuestas por el profesor a través de las cuales y de forma individual se profundiza en aspectos concretos de la materia posibilitando al estudiante avanzar en la adquisición de determinados conocimientos y procedimientos de la materia, 2) Estudio individualizado de los contenidos de la materia 3) Actividades evaluativas (informes, exámenes, ...)

Propósito: Favorecer en el estudiante la capacidad para autorregular su aprendizaje, planificándolo, diseñándolo, evaluándolo y adecuándolo a sus especiales condiciones e intereses.

Contenido en ECTS: 60 horas no presenciales (2.4 ECTS)

Competencias: CT1,CT2,CT3,CT4,CT5,CT6,CT8,CT9,CT10, CE1,CE2,CE5,CE8

5. Actividades no presenciales grupales (Trabajo en grupo):

Descripción: Actividades (guiadas y no guiadas) propuestas por el profesor a través de las cuales y de forma grupal se profundiza en aspectos concretos de la materia posibilitando a los estudiantes avanzar en la adquisición de determinados conocimientos y procedimientos de la materia.

Propósito: Favorecer en los estudiantes la generación e intercambio de ideas, la identificación y análisis de diferentes puntos de vista sobre una temática, la generalización o transferencia de conocimiento y la valoración crítica del mismo. Fomentar el trabajo en Grupo.

Contenido en ECTS: 20 horas no presenciales (0.8 ECTS)

Competencias: CT1,CT2,CT3,CT4,CT5,CT6,CT8,CT9,CT10, CE1,CE2,CE5

6. Tutorías académicas (a elegir entre grupo grande/grupo pequeño):

Descripción: manera de organizar los procesos de enseñanza y aprendizaje que se basa en la interacción directa entre el estudiante y el profesor

Propósito: 1) Orientan el trabajo autónomo y grupal del alumnado, 2) profundizar en distintos aspectos de la

materia y 3) orientar la formación académica-integral del estudiante Contenido en ECTS: 10 horas presenciales, grupales e individuales (0.4 ECTS) Competencias: CT1,CT2,CT3,CT4,CT5,CT6,CT8,CT9,CT10, CE1,CE2,CE5,CE8

PROGRAMA DE ACTIVIDADES

Primer cuatrimestre	Temas del temario	Actividades presenciales (NOTA: Modificar según la metodología docente propuesta para la asignatura)						Actividades no presenciales (NOTA: Modificar según la metodología docente propuesta para la asignatura)			
		Sesiones teóricas (horas)	Sesiones prácticas (horas)	Exposiciones y seminarios (horas)	Tutorías y colectivas (horas)	Exámenes (horas)	Etc.	Tutorías individuales (horas)	Estudio y trabajo individual del alumno (horas)	Trabajo en grupo (horas)	Etc.
Semana 1	1	3	1	0	0	0			4	1	
Semana 2	1	3	1	0	0	0			4	1	
Semana 3	1	3	1	0	1	0			4	2	
Semana 4	2	3	1	0	0	0			4	1	
Semana 5	2	3	1	0	0	0			4	1	
Semana 6	2	3	1	0	1	0			4	2	
Semana 7	3	3	2	0	1	0			4	2	
Semana 8	4	3	1	0	1	0			4	1	
Semana 9	5	2	1	0	1	1			4	1	
Semana 10	6	3	1	0	1	0			4	1	
Semana 11	7	3	1	0	1	0			4	2	
Semana 12	8	3	1	0	1	0			4	1	
Semana 13	9	3	1	0	1	0			4	1	
Semana 14	10	2	1	1	1	0			4	1	
Semana 15		0	0	4	0	0			4	2	
Total horas	150h	39	15	5	10	1			60	20	

EVALUACIÓN (INSTRUMENTOS DE EVALUACIÓN, CRITERIOS DE EVALUACIÓN Y PORCENTAJE SOBRE LA CALIFICACIÓN FINAL, ETC.)

GRUPO A (PROFESOR ARTURO MONCHO JORDÁ)

Se utilizarán alguna o algunas de las siguientes técnicas de evaluación:

- Uno o varios exámenes teórico-prácticos, que podrán incluir cuestiones teóricas, demostraciones y resolución de La ponderación de este bloque oscila entre el 70% y el 80%.
- La parte práctica correspondiente al trabajo autónomo del alumno (resolución y entrega de problemas propuestos, desarrollo de proyectos individuales o en grupo, entrega de informes/memorias o en su caso entrevistas personales con los alumnos, realización y presentación de seminarios, etc) será puntuada con una calificación entre el 20% y el 30%.

GRUPO B (PROFESOR MIGUEL ÁNGEL MUÑOZ MARTÍNEZ)

Se utilizarán alguna o algunas de las siguientes técnicas de evaluación:

- Para la parte teórica se realizarán exámenes de evaluación por temas o bloques de temas. La ponderación de este bloque oscila entre el 50% y el 60%.
- La parte práctica correspondiente al trabajo autónomo del alumno (realización de prácticas computacionales, resolución de problemas, desarrollo de proyectos individuales o en grupo, entrega de informes/memorias o en su caso entrevistas personales con los alumnos, realización y presentación de seminarios, etc) será puntuada con una calificación entre el 40% y el 50%.

En ambos casos (grupos A y B) la calificación global corresponderá por tanto a la puntuación ponderada de los diferentes aspectos y actividades que integran el sistema de evaluación. Por tanto, el resultado de la evaluación será una calificación numérica obtenida mediante la suma ponderada de las calificaciones correspondientes a las distintas partes.

Para los estudiantes que se acojan a la evaluación única final, esta modalidad de evaluación estará formada por todas aquellas pruebas que el profesor estime oportunas, de forma que se pueda acreditar que el estudiante ha adquirido la totalidad de las competencias generales y específicas descritas en el apartado correspondiente de esta Guía Docente.

Todo lo relativo a la evaluación se regirá por la normativa sobre planificación docente y organización de exámenes vigente en la Universidad de Granada.

El sistema de calificaciones se expresará mediante calificación numérica de acuerdo con lo establecido en el art. 5 del R. D 1125/2003, de 5 de septiembre, por el que se establece el sistema europeo de créditos y el sistema de calificaciones en las titulaciones universitarias de carácter oficial y validez en el territorio nacional.

INFORMACIÓN ADICIONAL

