Guía docente de Física de los Sistemas Complejos (26711I2)

Curso 2025/2026
Fecha de aprobación: 03/07/2025

Grado

Grado en Física

Rama

Ciencias

Módulo

Física Computacional y de los Sistemas Complejos

Materia

Física de los Sistemas Complejos

Year of study

4

Semestre

2

ECTS Credits

6

Tipo

Optativa

Profesorado

Teórico

  • Daniel Manzano Diosdado. Grupo: B
  • Miguel Ángel Muñoz Martínez. Grupo: A

Práctico

  • Rubén Calvo Ibañez Grupo: 1
  • Daniel Manzano Diosdado Grupo: 2
  • Miguel Ángel Muñoz Martínez Grupo: 1
  • Adrián Roig Oliver Grupo: 1

Tutorías

Daniel Manzano Diosdado

Email
  • Lunes de 10:00 a 12:00 (Desp. 3, Planta Baja)
  • Martes de 10:00 a 12:00 (Desp. 3, Planta Baja)
  • Miércoles de 10:00 a 12:00 (Desp. 3, Planta Baja)

Miguel Ángel Muñoz Martínez

Email
  • Lunes de 11:00 a 14:00 (Desp. 2, Planta Baja)
  • Miércoles de 11:00 a 14:00 (Desp. 2, Planta Baja)

Rubén Calvo Ibañez

Email
No hay tutorías asignadas para el curso académico.

Adrián Roig Oliver

Email
No hay tutorías asignadas para el curso académico.

Prerrequisitos y/o Recomendaciones

Son necesarios conocimientos generales de matemáticas y física (particularmente, mecánica) como se adquieren, por ejemplo, en las asignaturas básicas y obligatorias de los primeros cursos del grado en Física. Es conveniente tener conocimientos consolidados en Física computacional, así como de Física Estadística.

En el caso de utilizar herramientas de IA para el desarrollo de la asignatura, el estudiante debe adoptar un uso ético y responsable de las mismas. Se deben seguir las recomendaciones contenidas en el documento de "Recomendaciones para el uso de la inteligencia artificial en la UGR" publicado en esta ubicación: https://ceprud.ugr.es/formacion-tic/inteligencia-artificial/recomendaciones-ia#contenido0

Breve descripción de contenidos (Según memoria de verificación del Máster)

Introducción. Complejidad. Caos. Geometría fractal. Invariancia de escala. Fenómenos colectivos o cooperativos. Fenómenos críticos. Formación de patrones.

Competencias

Competencias Generales

  • CG01. Capacidad de análisis y síntesis
  • CG02. Capacidad de organización y planificación
  • CG03. Comunicación oral y/o escrita
  • CG04. Conocimientos de informática relativos al ámbito de estudio
  • CG05. Capacidad de gestión de la información
  • CG06. Resolución de problemas
  • CG08. Razonamiento crítico
  • CG09. Aprendizaje autónomo
  • CG10. Creatividad

Competencias Específicas

  • CE01. Conocer y comprender los fenómenos y las teorías físicas más importantes.
  • CE02. Estimar órdenes de magnitud para interpretar fenómenos diversos.
  • CE05. Modelar fenómenos complejos, trasladando un problema físico al lenguaje matemático.
  • CE08. Utilizar herramientas informáticas para resolver y modelar problemas y para presentar sus resultados.

Resultados de aprendizaje (Objetivos)

El alumno, llegado a este cuatrimestre, ya conoce las descripciones microscópica y macroscópica de la física como son proporcionadas, respectivamente, por las mecánicas clásica y cuántica así como los conceptos básicos de termodinámica y la física estadística, que relaciona con rigor esas descripciones en el caso de sistemas en equilibrio termodinámico.

Pero el equilibrio termodinámico es una circunstancia especial que no suele darse en los casos que más interesan en la actuialidad a la Ciencia, como , por ejemplo cuando se establecen regímenes turbulentos en un fluido, o compuestos químicos agrupados logran el primer indicio de vida independiente, o el sistema nervioso consigue funciones de procesado de información de alto nivel mediante la coordinación de grupos de neuronas individuales, o epidemias se propagan en una red de interacciones. Es entonces relevante el concepto de sistema complejo, capaz de mostrar una fascinante fenomenología debida a cooperación entre elementos. El estudio reciente en física de estos sistemas complejos ha llevado al desarrollo de potentes métodos de análisis que descansan en computación y ha generado o renovado conceptos, todo ello trascendiendo las fronteras de la física hasta invadir los fundamentos de otras ciencias, incluyendo biología y sociología.

Es ésta la situación que se propone describir la asignatura, a la vez que pretende ayudar al alumno a:

1) Desarrollar sus habilidades para analizar y plasmar mediante algoritmos lo esencial en sistemas y procesos naturales, aprendiendo así a resolver con eficacia y precisión problemas diversos,

2) Usar ordenadores de modo creativo en la modelización de situaciones de interés en ciencia, tecnología y gestión, y

3) Aceptar, si desea hacerlo, los desafíos que, una vez graduado, le puede plantear la investigación actual en centros públicos o privados.

Programa de contenidos Teóricos y Prácticos

Teórico

1. Introducción. Complejidad. Orden y entropía en la naturaleza. Efectos cooperativos en física estadística.Escalas y niveles de descripción. No-linealidad. Predictabilidad. Medidas de complejidad.

2. Teoría de sistemas dinámicos. Introducción a la teoría de sistemas dinámicos y caos (Poincaré. Lorenz. May. Feigenbaum). Mapas no lineales. Puntos fijos, ciclos límite y atractores extraños. Teoría de estabilidad en ecuaciones diferenciales unidimensionales y bidimensionales. Teoría de bifurcaciones y catástrofes. Coeficientes de Lyapunov. Universalidad. Integrabilidad y caos hamiltoniano.

3. Invariancia de escala. Leyes de potencia. Mecanismos de generación de leyes de potencias. Geometría fractal. Regularidad, aleatoriedad y auto-semejanza. Dimensión Hausdorff o dimension fractal. (Multifractalidad). Rugosidad y estructuras auto-afines.

4. Teoría de procesos estocásticos. Breve introducción histórica. Movimiento Browniano. Caminante aleatorio. Teoría de Einstein. Experimentos de Perrin. Procesos de Markov. Ecuación maestra. Ecuaciones estocásticas: Langevin y Fokker Planck. Integrales de camino. Vuelos de Levy.

5. Teoría de cambios de fase (I): Percolación. Invariancia de escala en el punto crítico. Introducción al grupo de renormalización. Percolación dinámica (incendios forestales). Percolación dirigida y el proceso de contacto.

6. Teoría de cambios de fase (II): Curva de Guggenheim y universalidad. Modelos reticulares. Modelo de Ising. Ruptura espontánea de simetría. Parámetro de orden y parámetro de control. Correlaciones y fluctuaciones. Exponentes críticos y leyes de escala. Teoría de campo medio. Teoría de Ginzburg Landau. Criterio de Ginzburg. Bloques de Kadanoff y renormalización en espacio real.

7. Auto-organización y criticalidad. Pilas de arena. Terremotos. Criticalidad en biología.

8. Otros conceptos que se impartirán en semanrios especializados: Introducción a la teoría de redes complejas. Teoría de juegos evolutiva. Aplicaciones: Neurociencia, Ecología teórica y evolutiva, Biología de sistemas, etc.

Práctico

Se desarrollará un trabajo de investigación tuteada en algunos de los puntos cubiertos por el temario teórico.

Bibliografía

Bibliografía fundamental

· D. Sornette, Critical Phenomena in Natural Sciences, Springer 2009. · J. Sethna, Entropy, Order parameters and Complexity. Oxford 2015.

· J.J. Binney et al. The theory of Critical Phenomena. Oxford. 1999.

· S.H. Strogatz,“Non-linear dynamics and Chaos”, Addison Wisley 2012.

. A. Fuchs, “Nonlinear dynamics in complex systems”, Springer 2013.

. S. Thurner, R. Hanel, and P. Klimek. Introduction to the theory of complex systems. Oxford University Press, 2018.

· K. Christensen and N.R. Moloney, “Complexity and Criticality”, Imperial College, London 2005.

· R.J. Creswick et al., "Introduction to Renormalization Group Methods in Physics”, Wiley, NY 1992.

· J. Marro and R. Dickman, "Nonequilibrium Phase Transitions in Lattice Systems". Cambridge 2005.

·C.W. Gardiner, “Hanbdbook of stochastic methods”, Springer Verlag, 2000.

· N.G. van Kampen, “Stochastic processes in Physics and Chemistry”, Springer, 2004.

Bibliografía complementaria

· M. Newman, “Networks: An introduction”, Oxford 2011.

· A. Pikovsky et al. Synchronization: A universal concept in nonlinear sciences. Cambridge 2003.

· E. Ott, Chaos and dynamical systems, Cambridge, 2012.

· H. J. Jensen, "Self-Organized Criticality ", Cambridge Univ. Press 1998.

· P. Krapivsky, S. Redner, E. Ben-Naim,”A kinetic view of Statistical Physics”, Cambridge 2010.

Enlaces recomendados

Metodología docente

  • MD01. Lección magistral/expositiva 

Evaluación (instrumentos de evaluación, criterios de evaluación y porcentaje sobre la calificación final)

Evaluación Ordinaria

El alumno ha de acreditar conocimiento uniforme de toda la materia, como se adquiere participando activamente en clase, de modo que la asistencia continuada y la realización de problemas es parte esencial de la evaluación, y ha de profundizar en uno de los temas característicos de la asignatura, lo que puede conseguir haciendo un trabajo personal tutelado. Hay evaluación a lo largo del curso y, al finalizar éste, mediante las exposiciones orales y/o escritas que se determinen entre alumnos y profesor. Valoración: Trabajo de investigación: 2/3 de la nota final: problemas entregados, ejercicios y trabajo continuado 1/3 de la valoración final. El profesor se reserva el derecho a realizar un examen oral del trabajo de investigación para constatar el dominio del alumno del material presentado. El trabajo personal tutelado puede cambiarse, de acuerdo con el profesor, por un examen final que se valorará del mismo modo.

Evaluación por incidencias: Podrán solicitar evaluación por incidencias, los estudiantes que no puedan concurrir a las pruebas finales de evaluación (ordinaria, extraordinaria y única final) o a las programadas en la Guía Docente con fecha oficial, por alguna de las circunstancias recogidas en el artículo 9 de la Normativa de evaluación y de calificación de los estudiantes de la Universidad de Granada, siguiendo el procedimiento indicado en dicha normativa.

Evaluación Extraordinaria

El alumno ha de acreditar conocimiento uniforme de toda la materia.

Para acreditar dicho conocimiento el/la alumn@ se someterá a un examen único final (preferentemente oral) que se opta al 100% de la calificación.

Evaluación única final

De acuerdo con la Normativa de Evaluación y de Calificación de los Estudiantes de la UGR, se contempla la realización de una evaluación única final a la que podrán acogerse aquellos estudiantes que no puedan cumplir con el método de evaluación continua por algunos de los motivos recogidos en el Artículo 8. Para acogerse a la evaluación única final, el estudiante, en las dos primeras semanas de impartición de la asignatura, en las dos semanas siguientes a su matriculación si ésta se ha producido con posterioridad, o más tarde si hay causa sobrevenida, lo solicitará a través de la sede electrónica, alegando y acreditando las razones que le asisten para no poder seguir el sistema de evaluación continua.

La evaluación única final contendrá 2 pruebas (examen escrito y examen oral), de peso 2/3 y 1/3 respectivamente, con objeto de acreditar que el estudiante ha adquirido la totalidad de los resultados del aprendizaje, pudiendo el alumno alcanzar la calificación máxima.

El alumno deberá hacer un uso responsable de Inteligencia artificial y declararlo. La detección de violación de esta norma podrá repercutor en una evaluación negativa.

Información adicional

Alumnos con necesidades específicas de apoyo educativo (NEAE). Siguiendo las recomendaciones de la CRUE y del Secretariado de Inclusión y Diversidad de la UGR, los sistemas de adquisición y de evaluación de competencias recogidos en esta guía docente se aplicarán conforme al principio de diseño para todas las personas, facilitando el aprendizaje y la demostración de conocimientos de acuerdo a las necesidades y la diversidad funcional del alumnado. La metodología docente y la evaluación serán adaptadas al alumnado con NEAE, conforme al Artículo 11 de la normativa de Evaluación y de Calificación de estudiantes de la UGR, publicada en el Boletín Oficial de la UGR nº 112, de 9 de noviembre de 2016. Inclusión y Diversidad de la UGR. En el caso de estudiantes con discapacidad u otras NEAE, el sistema de tutoría deberá adaptarse a sus necesidades, de acuerdo a las recomendaciones de la Unidad de Inclusión de la UGR, procediendo los Departamentos y Centros a establecer las medidas adecuadas para que las tutorías se realicen en lugares accesibles. Asimismo, a petición del profesorado, se podrá solicitar apoyo a la unidad competente de la Universidad cuando se trate de adaptaciones metodológicas especiales. Información de interés para alumnado con discapacidad y/o Necesidades Específicas de Apoyo Educativo (NEAE): Gestión de servicios y apoyos (https://ve.ugr.es/servicios/atencion-social/estudiantes-con-discapacidad)

Consultar con los profesores para más detalles sobre la asignatura.