Guía docente de Matemáticas (2331111)

Curso 2025/2026
Fecha de aprobación: 27/06/2025

Grado

Grado en Finanzas y Contabilidad

Rama

Ciencias Sociales y Jurídicas

Módulo

Formación Básica

Materia

Matemáticas

Year of study

1

Semestre

1

ECTS Credits

6

Tipo

Troncal

Profesorado

Teórico

  • José Miguel Alonso Alonso. Grupo: A
  • Philippe Bechouche . Grupo: B

Práctico

  • José Miguel Alonso Alonso Grupos: 1 y 2
  • Philippe Bechouche Grupos: 3 y 4

Tutorías

José Miguel Alonso Alonso

Email
No hay tutorías asignadas para el curso académico.

Philippe Bechouche

Email
No hay tutorías asignadas para el curso académico.

Prerrequisitos y/o Recomendaciones

En el caso de utilizar herramientas de IA para el desarrollo de la asignatura, el estudiante debe adoptar un uso ético y responsable de las mismas. Se deben seguir las recomendaciones contenidas en el documento de "Recomendaciones para el uso de la inteligencia artificial en la UGR" publicado en esta ubicación: https://ceprud.ugr.es/formacion-tic/inteligencia-artificial/recomendaciones-ia#contenido0

Breve descripción de contenidos (Según memoria de verificación del Máster)

-Series numéricas. Series geométricas.

- Cálculo diferencial de funciones reales de una variable.

- Optimización de funciones de una variable.

- Cálculo integral de funciones de una variable.

- Matrices y Determinantes. Resolución de sistemas de ecuaciones lineales.

- Diagonalización de matrices.

Competencias

Competencias Generales

  • CG01. Habilidad de comprensión cognitiva. 
  • CG02. Capacidad de análisis y síntesis. 
  • CG05. Capacidad para la resolución de problemas. 
  • CG08. Capacidad para tomar decisiones. 
  • CG13. Capacidad crítica y autocrítica. 
  • CG15. Capacidad de aprendizaje y trabajo autónomo. 
  • CG17. Creatividad o habilidad para generar nuevas ideas. 
  • CG23. Capacidad para aplicar los conocimientos a la práctica. 

Competencias Específicas

  • CE08. Conocer y aplicar los conceptos básicos de Matemáticas.  
  • CE09. Aprender el manejo de las técnicas básicas del álgebra lineal y adquirir las técnicas básicas del cálculo diferencial e integral en funciones de una variable. 
  • CE10. Conocer las series numéricas y aprender a calcular el valor de la suma en las series geométricas.  

Competencias Transversales

  • CT02. Capacidad para comprender, interpretar y aplicar los conceptos, métodos y técnicas que se emplean para la toma de dicisiones en la dirección financiera para el logro de los objetivos de las organizaciones, así como los utilizados en el análisi y la gestión de los distindos instrumentos financieros en el contexto de sus correspondientes mercados. 

Resultados de aprendizaje (Objetivos)

  • Adquisición de las técnicas básicas de las Matemáticas.
  • Capacidad de plantear con lenguaje matemático un problema económico-empresarial.
  • Relacionar los conocimientos adquiridos con los conceptos típicos de otras materias de la titulación (Estadística, Teoría Económica, Contabilidad, etc.).
  • Resolución de problemas planteados en el ámbito económico-empresarial usando las técnicas matemáticas más adecuadas.
  • Analizar cuantitativamente la realidad económico-empresarial.
  • Calcular el valor de las sumas en las series geométricas.
  • Interpretar adecuadamente las gráficas de funciones de una variable.
  • Calcular derivadas y primitivas de las funciones elementales.
  • Resolver problemas de optimización de funciones de una variable.
  • Resolver simbólicamente ecuaciones matriciales abstractas.
  • Resolver sistemas de ecuaciones lineales.
  • Calcular determinantes de matrices cuadradas de dimensión baja.
  • Calcular las matrices inversas de las matrices regulares de dimensión pequeña.
  • Calcular e interpretar los valores propios y los vectores propios de matrices cuadradas.
  • Aplicar los conocimientos abstractos a problemas formulados con terminología económica.

Programa de contenidos Teóricos y Prácticos

Teórico

Teórico

  1. Conceptos básicos sobre funciones de una variable
    1. Intervalos. Dominio e imagen de una función.
    2. Funciones elementales. Propiedades.
    3. Funciones en Economía: oferta, demanda, ingresos, costes, beneficios, utilidad.
    4. Límite de una función en un punto. Continuidad.
    5. Teorema de Bolzano. Aplicaciones.
  2. Cálculo diferencial de funciones de una variable
    1. Derivabilidad: interpretaciones y aplicaciones.
    2. Derivadas de las funciones elementales. Reglas de derivación.
  3. Optimización de funciones de una variable
    1. Crecimiento y decrecimiento. Concavidad y convexidad.
    2. Extremos relativos y extremos absolutos. Teorema de Weierstrass.
  4. Cálculo integral de funciones de una variable
    1. Cálculo de primitivas.
    2. Integral definida. Regla de Barrow.
  5. Conceptos básicos sobre matrices y vectores
    1. Generalidades sobre vectores: notación, operaciones y propiedades.
    2. Generalidades sobre matrices: notación, operaciones y propiedades.
    3. Cálculo de determinantes.
    4. Cálculo de matrices inversas.
  6. Sistemas de ecuaciones lineales
    1. Reducción de matrices. Rango de una matriz.
    2. Método de Gauss.
    3. Teorema de Rouché Frobenius.
    4. Sistemas homogéneos.
  7. Diagonalización de matrices por semejanza
    1. Determinación de valores y vectores propios de una matriz.
    2. Matrices equivalentes y matrices de paso. Diagonalización.
    3. Interpretaciones y aplicaciones económicas.
  8. Sucesiones y series de números reales
    1. Sucesiones de números reales, operadores sobre sucesiones, sucesiones aritmético.
    2. Series de números reales, convergencia y criterios de convergencia.
    3. Sumas de series geométricas.

Práctico

Prácticas de Laboratorio: dos prácticas de ordenador.

  1. Representación de funciones de una variable. Derivación e integración. Métodos de resolución de problemas de optimización asistidos por ordenador.
  2. Operaciones con matrices. Sistemas de ecuaciones. Diagonalización.

Bibliografía

Bibliografía fundamental

  • Álvarez de Morales Mercado, M. y Fortes Escalona, M.A., Matemáticas Empresariales. Ed. Copicentro.
  • Álvarez de Morales Mercado, M. y Fortes Escalona, M.A., Matemáticas para Economía y Administración y Dirección de Empresas. Ed. Técnica Avicam, 2023.
  • Arya, J.C. y Lardner, R., Matemáticas aplicadas a la administración y a la economía. Ed. Pearson, 2009.
  • García Cabello, J., Matemáticas Imprescindibles en la Administración de Empresas: ejemplos prácticos y aplicaciones. Ed. Técnica Avicam, 2016.
  • Haeussler, J.R., Matemáticas para Administración, Economía, Ciencias Sociales y de la Vida. Ed. Prentice Hall.
  • Hoffmann, L.D. y otros, Matemáticas aplicadas a la administración y los negocios, Ed. McGraw Hill, 2014.
  • Stewart, J., Cálculo Diferencial e integral. Ed. Thomson.

Bibliografía complementaria

  • Alegre, P., Matemáticas Empresariales. Ed. AC.
  • Jarné, G, Pérez-Grasa, I, Minguillón, E., Matemáticas para la economía: álgebra lineal y cálculo diferencial, Ed. McGraw Hill, 2010.
  • Sydsaeter, H. y Hammond, P.J., Matemáticas para el Análisis Económico. Ed. Prentice Hall.

Enlaces recomendados

http://www.wolframalpha.com (Programa para las prácticas de ordenador)

http://prado.ugr.es (Plataforma docente PRADO)

http://mateapli.ugr.es (Departamento de Matemática Aplicada)

Metodología docente

  • MD01. Docencia presencial en el aula. 
  • MD02. Estudio Individualizado del del alumno, búsqueda, consulta y tratamiento de información, resolución de problemas y casos prácticos, y realización de trabajos y exposiciones. 
  • MD03. Tutorías individuales y/o colectivas y evaluación  

Evaluación (instrumentos de evaluación, criterios de evaluación y porcentaje sobre la calificación final)

Evaluación Ordinaria

La evaluación será preferentemente continua. No obstante, se podrá solicitar la evaluación única final de acuerdo con la "Normativa de Evaluación y de Calificación de los Estudiantes de la UGR” (véase apartado correspondiente, más adelante). Si no se solicita la evaluación única final en el plazo y forma establecidos, se entenderá que se renuncia a esta posibilidad.
Cada profesor elegirá las pruebas que considere más adecuadas para realizar la evaluación continua entre las siguientes :

  • Exámenes escritos.
  • Trabajos académicamente dirigidos, en relación con los contenidos de la asignatura.
  • Realización de prácticas con ordenador. Realización de exámenes virtuales (en línea) mediante una plataforma (como PRADO u otra similar).
  • Participación activa de los estudiantes en las clases teóricas, prácticas, seminarios y talleres.

La calificación final será la suma de todas las calificaciones parciales obtenidas.
Los alumnos que obtengan una calificación inferior a 5 puntos deberán presentarse a un examen final en la fecha y lugar fijados por la Comisión Docente de la Facultad de Ciencias Económicas y Empresariales y la convocatoria definitiva se podrá consultar en la página https://fccee.ugr.es/.
El profesorado de cada grupo informará a cada alumno suspenso de los temas de los que debe volver a examinarse en el examen final y del valor de las pruebas que debe realizar.
Para facilitar dicha tarea, el profesorado de la asignatura podrá dividir el temario en bloques y evaluar, de manera independiente, cada uno de los bloques.
Los alumnos que han aprobado también podrán presentarse al examen final, previa renuncia a la puntuación obtenida.

Evaluación Extraordinaria

  • Se realizará un único examen escrito cuya puntuación máxima es de 10 puntos (100% de la nota final), en el día y hora fijados por la Comisión Docente de la Facultad de Ciencias Económicas y Empresariales.
  • La evaluación podrá ser complementada con una entrevista con el profesorado y las explicaciones dadas en la misma, serán vinculantes a la hora de calificar.
  • El alumno que no se presente a este examen, aparecerá en acta como no presentado.

Evaluación única final

Se realizará un único examen final escrito cuya puntuación supondrá el 100% de la calificación final (10 puntos). El alumno que no se presente a este examen final tendrá la calificación de NO PRESENTADO.

La fecha y lugar serán fijados por la Facultad y coincidirán con las de la evaluación continua.

Información adicional

Tanto para la evaluación continua, como para la evaluación única final, todos los aspectos relativos a la evaluación se regirán por la normativa vigente de la Universidad de Granada.

Normativa de Evaluación y de Calificación de los Estudiantes de la UGR con última modificación aprobada en Consejo de Gobierno el 26 de octubre de 2016 y publicado en BOUGR núm. 112, el 9 de noviembre de 2016 (http://secretariageneral.ugr.es/bougr/pages/bougr112/_doc/examenes%21).