Guía docente de Teoría de la Probabilidad (2231123)

Curso 2024/2025
Fecha de aprobación: 25/06/2024

Grado

Grado en Estadística

Rama

Ciencias

Módulo

Probabilidad

Materia

Probabilidad

Year of study

2

Semestre

1

ECTS Credits

6

Tipo

Obligatoria

Profesorado

Teórico

Juan José Serrano Pérez. Grupo: A

Práctico

Juan José Serrano Pérez Grupos: 1, 2 y 3

Tutorías

Juan José Serrano Pérez

Email
  • Primer semestre
    • Martes de 10:00 a 13:30 (Dpcho. 22 Dpto. Estadística e Io, Facultad de Ciencias)
    • Miércoles de 11:00 a 13:30 (Dpcho. 22 Dpto. Estadística e Io, Facultad de Ciencias)
  • Segundo semestre
    • Martes de 10:30 a 12:30 (Dpcho. 22 Dpto. Estadística e Io, Facultad de Ciencias)
    • Jueves de 12:00 a 13:30 (Dpcho. 22 Dpto. Estadística e Io, Facultad de Ciencias)
    • Viernes de 11:00 a 13:30 (Dpcho. 22 Dpto. Estadística e Io, Facultad de Ciencias)

Prerrequisitos y/o Recomendaciones

Para un correcto seguimiento de esta asignatura, se recomienda tener cursadas y aprobadas las asignaturas Cálculo de probabilidades I y Cálculo de probabilidades II del módulo de formación básica.

Breve descripción de contenidos (Según memoria de verificación del Máster)

  • Vectores aleatorios: características y modelos.
  • Convergencia de sucesiones de variables aleatorias.
  • Leyes de los grandes números y Teorema central del límite.

Competencias

Competencias Generales

  • CG01. CG01. Poseer los conocimientos básicos de los distintos módulos que, partiendo de la base de la educación secundaria general, y apoyándose en libros de texto avanzados, se desarrollan en la propuesta de título de Grado en Estadística que se presenta. 
  • CG02. CG02. Saber aplicar los conocimientos básicos de cada módulo a su trabajo o vocación de una forma profesional y poseer las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de la Estadística y ámbitos en que esta se aplica directamente.  
  • CG03. CG03. Saber reunir e interpretar datos relevantes para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética.  
  • CG04. CG04. Poder transmitir información, ideas, problemas y sus soluciones, de forma escrita u oral, a un público tanto especializado como no especializado.  
  • CG05. CG05. Haber desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía.  
  • CG06. CG06. Saber utilizar herramientas de búsqueda de recursos bibliográficos.  
  • CG08. CG08. Poseer habilidades y aptitudes que favorezcan el espíritu emprendedor en el ámbito de aplicación y desarrollo de su formación académica. 

Competencias Específicas

  • CE01. CE01. Conocer los fundamentos básicos del razonamiento estadístico, en el diseño de estudios, en la recogida de información, en el análisis de datos y en la extracción de conclusiones. 
  • CE03. CE03. Conocer los fundamentos teóricos y saber aplicar modelos y técnicas estadísticas en estudios y problemas reales en diversos ámbitos científicos y sociales. 
  • CE04. CE04. Saber seleccionar los modelos o técnicas estadísticas para su aplicación en estudios y problemas reales en diversos ámbitos científicos y sociales, así como conocer herramientas de validación de los mismos. 
  • CE06. CE06. Comprender y utilizar básicamente el lenguaje matemático. 
  • CE07. CE07. Conocer los conceptos y herramientas matemáticas necesarias para el estudio de los aspectos teóricos y prácticos de la Probabilidad, la Estadística y la Investigación Operativa. 

Resultados de aprendizaje (Objetivos)

  • Manejar vectores aleatorios y las distribuciones multidimensionales más usuales en las aplicaciones y conocer su utilidad para la modelización de fenómenos reales.
  • Saber aplicar los diferentes tipos de convergencia de sucesiones de variables aleatorias en la resolución de problemas.
  • Saber utilizar los teoremas límites (leyes de los grandes números y teorema central del límite) en la resolución de problemas.

Programa de contenidos Teóricos y Prácticos

Teórico

Tema 1. Vectores aleatorios: características y modelos.

  • Definición y caracterizaciones de un vector aleatorio.
  • Distribución de probabilidad y función de distribución.
  • Esperanza matemática y momentos.
  • Función característica de variables y vectores aleatorios.
  • Independencia.
  • Distribución normal multidimensional.

Tema 2. Convergencia de sucesiones de variables aleatorias.

  • Convergencia casi segura.
  • Convergencia en probabilidad.
  • Convergencia en ley.
  • Convergencia en media cuadrática.
  • Relación entre los distintos tipos de convergencias.

Tema 3. Leyes de los grandes números.

  • Planteamiento general de las leyes de los grandes números.
  • Leyes débiles de los grandes números.
  • Leyes fuertes de los grandes números.

Tema 4. Problema central del límite clásico.

  • Primeros teoremas y leyes límite.
  • Planteamiento del problema central del límite clásico.
  • Extensiones del caso Bernoulli.
  • Solución del problema central del límite clásico.

Bibliografía

Bibliografía fundamental

  • Ash, R.B. (2008). Basic Probability Theory. Dover Publications Inc.
  • Billingsley, P. (1995). Probability and Measure. John Wiley & Sons, New York.
  • Canavos, G. (2003). Probabilidad y Estadística: Aplicaciones y Métodos. McGraw-Hill Interamericana, México.
  • Capinski, M. Zastawniak, T. (2003). Probability through Problems. Springer-Verlang, New York.
  • Gnedenko, B. V. (1989). The Theory of Probability and the Elements of Statistics. Chelsea Publishing Company, New York.
  • Gutiérrez, R., Martínez, A. y Rodríguez, C. (1993). Curso Básico de Probabilidad. Pirámide.
  • Hernández, V., Romo, J. J. y Vélez, R. (1989). Problemas y ejercicios de Teoría de la Probabilidad. Ed. Cuadernos de la UNED 68, Universidad de Educación a Distancia, Madrid.
  • Ibarrola, P., Pardo, L. y Quesada, V. (1997). Teoría de la Probabilidad. Síntesis, Madrid.
  • Laha, R. G. y Rohatgi, V. K. (1979). Probability Theory. John Wiley & Sons, New York.
  • Lòeve, M. (1977). Probability Theory I (4th Edition). Springer-Verlag Inc, New York.
  • Rohatgi, V. K. y Saleh, A. K. (2015). An introduction to Probability and Statisitc. John Wiley&Sons, New Jersey.
  • Sevastiánov, B.A., Chistiakov, V.P., Zubkov, A.M. (1985). Problemas de Cálculo de Probabilidades. Mir, Moscú.
  • Stoyanov, J. (1987). Counterexamples in Probability. John Wiley & Sons, New York.
  • Stoyanov, J., Mirazchiiski, I., Ignatov, Z. y Tanushev, M. (1989). Exercise Manual in Probabilility Theory. Kluwer Academic Publishers, Boston.

Bibliografía complementaria

  • Dood, J. L. (1994) Measure Theory. Springer-Verlang, New York.
  • Gan, G., Ma, C. y Xie, H. (2014). Measure, Probability, and Mathematical Finance. John Wiley&Sons, New Jersey.
  • Miller, S. y Childers, D. (2012). Probability and Random Processes with Applications to Signal Processing and Communications. Academic Press, USA.

Enlaces recomendados

Metodología docente

  • MD01. MD1. Lección magistral/expositiva 
  • MD02. MD2. Sesiones de discusión y debate 
  • MD03. MD3. Resolución de problemas y estudio de casos prácticos 
  • MD04. MD4. Prácticas en sala de informática 
  • MD05. MD5. Seminarios 
  • MD06. MD6. Ejercicios de simulación 
  • MD07. MD7. Análisis de fuentes y documentos 
  • MD08. MD8. Realización de trabajos en grupo 
  • MD09. MD9. Realización de trabajos individuales 

Evaluación (instrumentos de evaluación, criterios de evaluación y porcentaje sobre la calificación final)

Evaluación Ordinaria

De acuerdo a lo establecido en la guía docente de la titulación, se valorarán:

  • Pruebas específicas de conocimientos, orales y escritas. Resolución de ejercicios: Examen final escrito de teoría y problemas. El porcentaje sobre la calificación final será del 70%.
  • Trabajos y seminarios: Controles parciales y trabajos, incluyendo preguntas de teoría y problemas, en relación con los contenidos de la asignatura. El porcentaje sobre la calificación final será del 25%.
  • Participación, actitud y esfuerzo personal: Participación activa en las clases teóricas y prácticas, y demás actividades relacionadas con la asignatura. El porcentaje sobre la calificación final será del 5%.

El estudiante que no se presente al examen final tendrá la calificación de “No presentado”.

Evaluación Extraordinaria

Examen escrito teórico-práctico sobre el temario que figura en esta guía docente.

  • La calificación final será la obtenida en este examen.
  • El estudiante que no se presente a este examen tendrá la calificación de “No presentado”.

Evaluación única final

Examen escrito teórico-práctico sobre el temario que figura en esta guía docente.

  • El porcentaje sobre la calificación final será del 100%.
  • El estudiante que no se presente a este examen final tendrá la calificación de “No presentado”.

Software Libre

Para el desarrollo de la asignatura el profesor hará uso ocasionalmente del software libre R para ilustrar determinados tipos de convergencia de sucesiones mediante simulación y mostrar diferentes aplicaciones del teorema central del límite.