Course guide of Physics of Biological Systems (2001112)
Departamento de Física Aplicada: 21/06/2024
Departamento de Física Teórica y del Cosmos: 10/06/2024
Grado (bachelor's degree)
Branch
Module
Subject
Year of study
Semester
ECTS Credits
Course type
Teaching staff
Theory
- Delfina María Bastos González. Grupo: C
- Diego García Gámez. Grupo: A
- Mónica Relaño Pastor. Grupo: B
- Sándalo Roldán Vargas. Grupo: C
- Tomás Ruiz Lara. Grupo: B
- Patricia Sánchez Lucas. Grupo: A
- Bruno Zamorano García. Grupo: D
Practice
- Stefania Nardecchia Grupo: 1
- Sergio Navas Concha Grupo: 3
- Tomás Ruiz Lara Grupos: 3 y 4
- Paola Sánchez Moreno Grupos: 2, 3 y 4
- Alba Soto Ontoso Grupos: 1 y 2
- Roberto Omar Vega Morales Grupos: 4, 5, 6, 7 y 8
Timetable for tutorials
Delfina María Bastos González
Email- First semester
- Monday de 10:30 a 12:30 (Etsa)
- Wednesday de 09:30 a 11:30 (Dpcho.27 Dpto. Física Aplicada)
- Thursday de 10:30 a 12:30 (Etsa)
- Second semester
- Monday de 09:00 a 11:00 (Dpcho.27 Dpto. Física Aplicada)
- Wednesday de 09:00 a 11:00 (Dpcho.27 Dpto. Física Aplicada)
- Friday de 09:00 a 11:00 (Dpcho.27 Dpto. Física Aplicada)
Diego García Gámez
Email- Monday de 10:00 a 13:00 (Despacho A6 Módulo)
- Wednesday de 10:00 a 13:00 (Despacho A6 Módulo)
Mónica Relaño Pastor
Email- Tuesday
- 11:00 a 13:00 (Despacho 8 Edif.Mecenas)
- 14:00 a 15:00 (Despacho 8 Edif.Mecenas)
- Wednesday
- 11:00 a 13:00 (Despacho 8 Edif.Mecenas)
- 14:00 a 15:00 (Despacho 8 Edif.Mecenas)
Sándalo Roldán Vargas
Email- Monday
- 10:00 a 11:00 (Dpcho.26 Dpto. Física Aplicada)
- 12:00 a 13:00 (Dpcho.26 Dpto. Física Aplicada)
- Wednesday
- 10:00 a 11:00 (Dpcho.26 Dpto. Física Aplicada)
- 12:00 a 13:00 (Dpcho.26 Dpto. Física Aplicada)
- Thursday
- 10:00 a 11:00 (Dpcho.26 Dpto. Física Aplicada)
- 12:00 a 13:00 (Dpcho.26 Dpto. Física Aplicada)
Tomás Ruiz Lara
Email- Monday de 11:00 a 12:00 (Despacho 9)
- Tuesday de 11:00 a 12:00 (Despacho 9)
- Wednesday de 11:00 a 12:00 (Despacho 9)
Patricia Sánchez Lucas
Email- Tuesday de 10:00 a 13:00 (Despacho A5 Módulo)
- Friday de 10:00 a 13:00 (Despacho A5 Módulo)
Bruno Zamorano García
Email- Monday de 10:00 a 13:00 (Despacho A05 Modulo A)
- Wednesday de 10:00 a 13:00 (Despacho A05 Modulo A)
Stefania Nardecchia
Email- First semester
- Tuesday de 10:00 a 13:00 (Dpcho.10 Dpto. Física Aplicada)
- Wednesday de 10:00 a 13:00 (Dpcho.10 Dpto. Física Aplicada)
- Second semester
- Tuesday de 10:00 a 13:00 (Dpcho.10 Dpto. Física Aplicada)
- Wednesday de 10:00 a 13:00 (Dpcho.10 Dpto. Física Aplicada)
Sergio Navas Concha
Email- Wednesday de 14:00 a 17:00 (Despacho 28)
- Thursday de 14:00 a 17:00 (Despacho 28)
Paola Sánchez Moreno
Email- First semester
- Monday de 15:00 a 18:00 (Dpcho.28 Dpto. Física Aplicada)
- Second semester
- Monday de 11:00 a 14:00 (Dpcho.28 Dpto. Física Aplicada)
Alba Soto Ontoso
EmailRoberto Omar Vega Morales
Email- Tuesday de 15:00 a 17:00 (Despacho 23)
- Wednesday de 15:00 a 17:00 (Despacho 23)
- Thursday de 15:00 a 17:00 (Despacho 23)
Prerequisites of recommendations
Having prior knowledge of Mathematics and Physics at secondary level is highly beneficial. Given the special nature of the group, a good proficiency in English is strongly recommended.
Brief description of content (According to official validation report)
- The relation between Physics and Biology
- Force, work and energy
- Fluid Mechanics
- Diffusion and osmosis
- Electric field and electric current
- Sound waves. Sound and hearing
- Electromagnetic radiation and radioactivity. Applications in Biology
General and specific competences
General competences
- CG01. Organisational and planning skills
- CG02. Teamwork
- CG03. Applying knowledge to problem solving
- CG04. Capacity for analysis and synthesis
- CG06. Critical reasoning
Specific competences
- CE37. Analysing the physical laws governing biological processes
- CE75. Knowing the physical and chemical principles of Biology
Objectives (Expressed as expected learning outcomes)
Learning and developing the basic concepts and laws in Physics for their subsequent application to relevant phenomena in Biology:
- Using the concepts of torque and centre of gravity, learning how the levers that appear in the main joints of animals work
- Understanding the meaning of energy conservation laws and their importance in Biology
- Understanding the physical properties of fluids, the characteristics of the surface of a liquid in contact with solids or gases, transport processes in fluids and their application to blood circulation, sap ascent in plants and gas transport through blood capillaries
- Studying the basic concepts of electricity required to understand ion transport through the cell membrane
- Understanding the physical basis of hearing and vision
- Studying the high-energy radiations that are used in various biological and medical applications
Detailed syllabus
Theory
INTRODUCTION
- UNIT 1: The relation between Physics and Biology. Measurement standards and unit systems. Dimensional analysis. Size, form and life. Scaling laws. Vectors
FORCE AND STABILITY. WORK AND ENERGY
- UNIT 2: Newton's Laws. Fundamental and derived forces. Torque. Centre of gravity. Equilibrium. Forces in muscles and joints
- UNIT 3: Work done by a force. Kinetic energy and potential energy. Conservation of energy. Power. Efficiency. Metabolic rate. Elasticity. Muscle energy
FLUID MECHANICS
- UNIT 4: Hydrostatics: Density and pressure. Hydrostatic pressure. Archimedes' principle. Hydrostatic examples in Biology
- UNIT 5: Hydrodynamics of an ideal fluid. Continuity equation. Bernoulli's equation. Biological examples
- UNIT 6: Hydrodynamics of a real fluid: Viscosity. Poiseuille's Law. Blood circulation. Stokes' Law. Sedimentation
- UNIT 7: Surface phenomena: Surface tension. Laplace's law. Contact angle and capillarity. Biological examples
DIFFUSION AND OSMOSIS
- UNIT 8: Flux. Fick's laws. Mean squared displacement. Osmosis. Osmotic pressure. Transcapillary substance transfer
ELECTRIC FIELD AND ELECTRIC CURRENT
- UNIT 9: Coulomb's law. Electric field. Electric potential. Electric dipole. Capacitors. Current intensity. Resistance. Ohm's law. Electric properties of membranes. Ion transport through membranes. Action potential. Nerve impulse
SOUND WAVES. SOUND AND HEARING
- UNIT 10: Properties of waves. Sound waves. Sound velocity. Stationary waves. Sound and its perception by living beings
ELECTROMAGNETIC RADIATION AND RADIOACTIVITY
- UNIT 11: Nature of light. Electromagnetic spectrum. Reflection and refraction. Snell's law. Lenses. Axes and principal planes. Focal and nodal points. The eye as an optical system. Fundamentals of optical instruments. Principles of radiation. Radioactive decay. Half-life. Interaction of radiation and matter. Biological effects. Usage of radioactive isotopes in Biology
Practice
SEMINARS / WORKSHOPS
- Problem solving of the different topics
- Seminars or presentations
LAB SESSIONS
Students will carry out 4 sessions out of the following:
- Precision measurements
- Static equilibrium. Torque
- Newton's laws
- Elastic constant
- Archimedes' principle
- Viscosity determination with the Stokes' method
- Surface tension
- Multimeter. Ohm's law
- Determination of gravity's acceleration with a simple pendulum
Bibliography
Basic reading list
- "Physics for the life sciences", A.H. Cromer. McGraw-Hill
- “Physics in Biology and Medicine”, P. Davidovits. Academic Press
- "General Physics", J.W. Kane and M.M. Sternheim. Wiley
Complementary reading
- "Physics for Scientists and Engineers", P.A. Tipler y G. Mosca. WH Freeman
- "Physics for Scientists and Engineers", R.A. Serway y J.W. Jewett. Cengage Learning
- "University Physics", Sears, Zemansky, Young y Freedman. Addison-Wesley-Pearson
- "Physics: Principles with Applications", D.G. Giancoli. Pearson
- "What is Life" E. Schrödinger. Cambridge University Press
- "Chance and necessity: an essay on the national philosophy of modern biology", J. Monod. HarperCollins
Recommended links
- https://en.khanacademy.org/science/physics
Teaching methods
- MD01. Lección magistral/expositiva
- MD03. Resolución de problemas y estudio de casos prácticos
- MD04. Prácticas de laboratorio y/o clínicas y/o talleres de habilidades
- MD11. Realización de trabajos individuales
Assessment methods (Instruments, criteria and percentages)
Ordinary assessment session
Assessment in the ordinary session will take place via two written tests, with problems and questions covering the relevant material that's been reviewed up to that date. The final marks in the continuous evaluation system of the ordinary session will have the following weights:
- First written test: 35-40%
- Second written test (same date as the ordinary exam session): 40-45%
- Lab sessions: 20%. In these, the competency will be assessed by a practical test and/or through the lab reports. In order to pass the whole subject, it is mandatory to pass the lab sessions (5 or more points over 10), successfully complete all the sessions and submit all the corresponding reports
Students will pass the subject by continuous evaluation when their final mark exceeds 5 points (out of 10) according to this weighting scheme.
Extraordinary assessment session
In the extraordinary session there will be a single final exam representing 80% of the final mark and an additional exam covering the concepts of the lab sessions, weighting 20%. This lab exam will take place on the same date but at a different time than the written exam of the extraordinary session.
Single final assessment
Students who, in accordance with the UGR guidelines, terms and deadlines, opt for this form of evaluation, will take an exam covering the theoretical part of the subject. Another exam will be required in order to assess the practical part. The aforementioned weights will be applied to this evaluation, being again compulsory to pass the lab exam in order to pass the whole subject.
Additional information
- Use of mobile phones is not allowed during lectures and lab sessions
- Following the advice from the CRUE and the diversity and inclusion office of the UGR, the assessment and learning evaluation will be designed following the principle of accessibility for everyone, making the necessary adaptations that enable the learning process and the demonstration of knowledge regardless of special needs and limitations of individuals